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• Temperature etc. demands microscopic degrees for freedom for its

proper description.

• Exact nature of these degrees of freedom is irrelevant; their

existence is vital. Entropy arises from the ignored degrees of

freedom

• EXAMPLE: Elasticity can be understood phenomenologically; has a

life of its own. Fundamental explanation comes from the atomic

micro structure of the solids.

• Thermodynamics offers a connection between the two though the

form of entropy functional, S[ξ]. No microstructure, no

thermodynamics!

• You never took a course in ‘quantum thermodynamics’.
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• Rindler horizons have a temperature (1975-76)
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WHY ARE HORIZONS HOT ?

(Where does Temperature spring from ?!)

PERIODICITY IN

IMAGINARY TIME

}

⇐⇒
{

FINITE TEMPERATURE

exp(−i t H) ⇐⇒ exp(− β H)

SPACETIMES WITH HORIZONS EXHIBIT PERIODICITY IN

IMAGINARY TIME =⇒ TEMPERATURE
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SO, WHY FIX IT WHEN IT WORKS ?

THIS CONVENTIONAL APPROACH HAS NO

EXPLANATION FOR SEVERAL PECULIAR FEATURES

WHICH NEED TO THE THOUGHT OF AS JUST

‘ALGEBRAIC ACCIDENTS’

PHYSICS PROGRESSES BY EXPLAINING FEATURES

WHICH WE NEVER THOUGHT NEEDED

ANY EXPLANATION !!

EXAMPLE: minertial = mgrav
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• Works for Kerr, FRW, .... [D. Kothawala et al., 06; Rong-Gen Cai, 06, 07]



2. Why is Einstein-Hilbert action holographic ?



2. Why is Einstein-Hilbert action holographic ?

• Example: The standard action in from classical mechanics is:

Aq =

∫

dt Lq(q, q̇); δq = 0 at t = (t1, t2)



2. Why is Einstein-Hilbert action holographic ?

• Example: The standard action in from classical mechanics is:

Aq =

∫

dt Lq(q, q̇); δq = 0 at t = (t1, t2)

• But you can get the same equations from an action with second derivatives:

Ap =

∫

dt Lp(q, q̇, q̈); δp = 0 at t = (t1, t2)

Lp = Lq −
d

dt

(

q
∂Lq

∂q̇

)



2. Why is Einstein-Hilbert action holographic ?

• Example: The standard action in from classical mechanics is:

Aq =

∫

dt Lq(q, q̇); δq = 0 at t = (t1, t2)

• But you can get the same equations from an action with second derivatives:

Ap =

∫

dt Lp(q, q̇, q̈); δp = 0 at t = (t1, t2)

Lp = Lq −
d

dt

(

q
∂Lq

∂q̇

)

• Action for gravity has exactly this structure! [TP, 02, 05]

Agrav =

∫

d4x
√
−g R =

∫

d4x
√
−g [Lbulk + Lsur]

√
−gLsur = −∂a

(

gij
∂
√−gLbulk

∂(∂agij)

)



2. Why is Einstein-Hilbert action holographic ?

• Example: The standard action in from classical mechanics is:

Aq =

∫

dt Lq(q, q̇); δq = 0 at t = (t1, t2)

• But you can get the same equations from an action with second derivatives:

Ap =

∫

dt Lp(q, q̇, q̈); δp = 0 at t = (t1, t2)

Lp = Lq −
d

dt

(

q
∂Lq

∂q̇

)

• Action for gravity has exactly this structure! [TP, 02, 05]

Agrav =

∫

d4x
√
−g R =

∫

d4x
√
−g [Lbulk + Lsur]

√
−gLsur = −∂a

(

gij
∂
√−gLbulk

∂(∂agij)

)

• In fact, one can develop a theory with Atotal = Asur + Amatter using the virtual

displacements of the horizon as key. [TP, 2005]



3. Why does the surface term give the horizon entropy ?



3. Why does the surface term give the horizon entropy ?

• In the gravitational action [TP, 02, 05]

Agrav =

∫

d4x
√
−g R =

∫

d4x
√
−g [Lbulk + Lsur]

√
−gLsur = −∂a

(

gij
∂
√−gLbulk

∂(∂agij)

)

throw away the Asur, vary the rest of the action, solve the field

equation for a solution with the horizon. Then .....



3. Why does the surface term give the horizon entropy ?

• In the gravitational action [TP, 02, 05]

Agrav =

∫

d4x
√
−g R =

∫

d4x
√
−g [Lbulk + Lsur]

√
−gLsur = −∂a

(

gij
∂
√−gLbulk

∂(∂agij)

)

throw away the Asur, vary the rest of the action, solve the field

equation for a solution with the horizon. Then .....

• You find that the part you threw away, the Asur, evaluated on any

horizon gives its entropy !
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• One can again develop a theory with

Atotal = Asur + Amatter using the virtual displacements of

the horizon as key. [TP, 2005]
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• The surface term is closely related to horizon entropy in Lanczos-Lovelock theory.
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• Principle of Equivalence ⇒ Gravity can be described by gab.

• Around any event there exists local inertial frames AND local

Rindler frames with a local horizon and temperature.

• Can flow of matter across the local, hot, horizon hide entropy ?

• Equivalently, can virtual displacements of a local patch of null

surface, leading to flow of energy across a hot horizon allow you to

hide entropy ?

• No. The virtual displacement of a null surface should cost entropy,

Sgrav.

• Dynamics should now emerge from maximising Smatter + Sgrav for all

Rindler observers!.

• Leads to gravity being an emergent phenomenon described by

Einstein’s equations at lowest order with calculable corrections.
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• Associate with virtual displacements of null surfaces an entropy/ action which is

quadratic in deformation field: [T.P, 08; T.P., A.Paranjape, 07]

S[ξ] = S[ξ]grav + Smatt[ξ]

with

Sgrav[ξ] =

∫

V
dDx

√
−g4P abcd∇cξa∇dξb; Smatt =

∫

V
dDx

√
−gT abξaξb

• Demand that the variation should constrain the background.

• This leads to P abcd having a (RG-like) derivative expansion in powers of number

of derivatives of the metric:

P abcd(gij, Rijkl) = c1

(1)

P abcd(gij) + c2

(2)

P abcd(gij, Rijkl) + · · · ,

• The m-th order term is unique:
(m)

P abcd = (∂L(m)/∂Rabcd);

• Example: The lowest order term is:

S1[ξ] =

∫

V

dDx

8π

(
∇aξ

b∇bξ
a − (∇cξ

c)2
)
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• Demand that δS = 0 for variations of all null vectors: This leads to

Lanczos-Lovelock theory with an arbitrary cosmological constant:

16π

[

P ijk
b Ra

ijk −
1

2
δa

bL(D)
m

]

= 8πT a
b + Λδa

b ,

• To the lowest order we get Einstein’s theory with cosmological

constant as integration constant. Equivalent to

(Gab − 8πTab)ξ
aξb = 0 ; (for all null ξa)

• In a derivative coupling expansion, Lanczos-Lovelock terms are

calculable corrections.
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• The extremum value can be computed on-shell on a solution.

• On any solution with horizon, it gives the correct Wald entropy:

S
∣
∣
H[on − shell] = 2π

∮

H
P abcdnabncdε̃ =

K∑

m=1

4πmcm

∫

H
dD−2x⊥

√
σL(D−2)

(m−1) ,

=
1

4
A⊥ + (Corrections)

• Further for any solution, in a local Rindler frame, the causal

horizons have the correct entropy. At the lowest order, it is quarter

of transverse area.
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5. How come gravity is immune to ground state energy?

• A cosmological constant term ρ0δi
j in Einsteins equation acts like matter with

negative pressure; consistent with all dark energy observations.

• The real trouble with cosmological constant is that gravity seems to be immune

to bulk vacuum energy.

• The matter sector and its equations are invariant under the shift of the

Lagrangian by a constant: Lmatter → Lmatter − ρ.

• But this changes energy momentum tensor by Tab → Tab + ρgab and gravity sector

is not invariant under this transformation.

• So after you have “solved” the cosmological constant problem, if someone

introduces Lmatter → Lmatter − ρ, you are in trouble again!

• The only way out is to have a formalism for gravity which is invariant under

Tab → Tab + ρgab.

• All these have nothing to do with observations of accelerated universe!

Cosmological constant problem existed earlier and will continue to exist even if all

these observations go away!
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A simple ‘theorem’

• Assume:

(a) Metric gab is a dynamical variable that is varied in the action.

(b) Action is generally covariant.

(c) Equations of motion for matter sector (at low energy) is

invariant under Lmatter → Lmatter − ρ0.

• Then cosmological constant problem cannot be solved; that is,

gravitational equations cannot be invariant under Tab → Tab − ρ0gab.

• Drop the assumption that gab is the dynamical variable, identify new

degrees of freedom (virtual displacements of null surfaces in

spacetime) associate an entropy with them and obtain the

dynamics from extremising the entropy.



GRAVITY IS IMMUNE TO BULK ENERGY



GRAVITY IS IMMUNE TO BULK ENERGY

• The action/entropy functional is invariant under the shift Tab → Tab + ρgab !



GRAVITY IS IMMUNE TO BULK ENERGY

• The action/entropy functional is invariant under the shift Tab → Tab + ρgab !

• The field equations have a new ‘gauge freedom’ and has the form:

P ijk
b Ra

ijk −
1

2
Lδa

b − κT a
b = (constant)δa

b



GRAVITY IS IMMUNE TO BULK ENERGY

• The action/entropy functional is invariant under the shift Tab → Tab + ρgab !

• The field equations have a new ‘gauge freedom’ and has the form:

P ijk
b Ra

ijk −
1

2
Lδa

b − κT a
b = (constant)δa

b

• Introduces a new length scale LH. (Observationally, LP /LH ≈ 10−60 ≈ exp(−
√

2π4).)

• Analogy: Solve Gab = 0 to get Schwarzchild metric with a parameter M .



GRAVITY IS IMMUNE TO BULK ENERGY

• The action/entropy functional is invariant under the shift Tab → Tab + ρgab !

• The field equations have a new ‘gauge freedom’ and has the form:

P ijk
b Ra

ijk −
1

2
Lδa

b − κT a
b = (constant)δa

b

• Introduces a new length scale LH. (Observationally, LP /LH ≈ 10−60 ≈ exp(−
√

2π4).)

• Analogy: Solve Gab = 0 to get Schwarzchild metric with a parameter M .

• We don’t worry about the value of (M/Mplanck) because M is an integration

constant; not a parameter in the equations.



GRAVITY IS IMMUNE TO BULK ENERGY

• The action/entropy functional is invariant under the shift Tab → Tab + ρgab !

• The field equations have a new ‘gauge freedom’ and has the form:

P ijk
b Ra

ijk −
1

2
Lδa

b − κT a
b = (constant)δa

b

• Introduces a new length scale LH. (Observationally, LP /LH ≈ 10−60 ≈ exp(−
√

2π4).)

• Analogy: Solve Gab = 0 to get Schwarzchild metric with a parameter M .

• We don’t worry about the value of (M/Mplanck) because M is an integration

constant; not a parameter in the equations.

• Given LP and LH we have ρ
UV

= 1/L4
P and ρ

IR
= 1/L4

H . The observed values is:

ρ
DE

≈ √
ρ

UV
ρ

IR
≈ 1

L2
P L2

H

≈ H2

G



GRAVITY IS IMMUNE TO BULK ENERGY

• The action/entropy functional is invariant under the shift Tab → Tab + ρgab !

• The field equations have a new ‘gauge freedom’ and has the form:

P ijk
b Ra

ijk −
1

2
Lδa

b − κT a
b = (constant)δa

b

• Introduces a new length scale LH. (Observationally, LP /LH ≈ 10−60 ≈ exp(−
√

2π4).)

• Analogy: Solve Gab = 0 to get Schwarzchild metric with a parameter M .

• We don’t worry about the value of (M/Mplanck) because M is an integration

constant; not a parameter in the equations.

• Given LP and LH we have ρ
UV

= 1/L4
P and ρ

IR
= 1/L4

H . The observed values is:

ρ
DE

≈ √
ρ

UV
ρ

IR
≈ 1

L2
P L2

H

≈ H2

G

• The hierarchy:

ρvac =

[
1

L4
P

︸ ︷︷ ︸

〈x〉

,
1

L4
P

(
LP

LH

)2

︸            ︷︷            ︸

〈x2〉1/2

,
1

L4
P

(
LP

LH

)4

, · · ·
]
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System Material body Spacetime

Macroscopic description Density, Pressure etc. Metric, Curvature

Thermodynamic T dS = dE + P dV T dS = dE + P dV

description (aka Einsteins equations!)

Evidence for Existence of temperature, Existence of temperature,

Microstructure entropy etc entropy etc.

Microscopic description Randomly moving atoms Fluctuations of null surfaces

Connection with Specify the entropy Specify the entropy

thermodynamics

Resulting equation Classical / Quantum Einsteins theory with

calculable corrections
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SUMMARY

• Gravity is an emergent, long-wavelength phenomenon like fluid

mechanics. The gab(t,x) etc. are like ρ(t,x),v(t,x).

• To go from thermodynamics to statistical mechanics, we have to

postulate new degrees of freedom and an entropy functional.

• Maximizing the entropy associated with all null surfaces gives

Einstein’s theory with Lanczos-Lovelock corrections [but not, e.g.,

f(R) gravity].

• Connects with the radial displacements of horizons and

TdS = dE + PdV as the key to obtaining a thermodynamic

interpretation of gravitational theories.

• The deep connection between gravity and thermodynamics goes

well beyond Einstein’s theory. Closely related to the holographic

structure of Lanczos-Lovelock theories.

• Connects with Asur giving the horizon entropy



REFERENCES

1. Original ideas were developed in:

• T. Padmanabhan, Class.Quan.Grav. 19, 5387 (2002). [gr-qc/0204019]

• T. Padmanabhan, Gen.Rel.Grav., 34 2029-2035 (2002) [gr-qc/0205090] [Second Prize

essay; Gravity Research Foundation Essay Contest, 2002]

• T. Padmanabhan, Gen.Rel.Grav., 35, 2097-2103 (2003) [Fifth Prize essay; Gravity Research

Foundation Essay Contest, 2003]

• T. Padmanabhan, Gen.Rel.Grav., 38, 1547-1552 (2006) [Third Prize essay; Gravity Research

Foundation Essay Contest, 2006]

• T. Padmanabhan, Gravity: the Inside Story, Gen.Rel.Grav., 40, 2031-2036 (2008) [First Prize

essay; Gravity Research Foundation Essay Contest, 2008]

2. Summary of the basic approach is in:

• T. Padmanabhan Phys. Reports, 406, 49 (2005) [gr-qc/0311036]

• T. Padmanabhan Gen.Rel.Grav., 40, 529-564 (2008) [arXiv:0705.2533]

• T. Padmanabhan Dark Energy and its implications for Gravity (2008) [arXiv:0807.2356]

3. Also see:

• A. Mukhopadhyay, T. Padmanabhan, Phys.Rev., D 74, 124023 (2006) [hep-th/0608120]

• T. Padmanabhan, Aseem Paranjape, Phys.Rev.D, 75, 064004 (2007). [gr-qc/0701003]


