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First,  let  me  express  my  gratefulness  to  the  Indian  Association  for  General
Relativity  and  Gravitation  for  inviting  me  to  deliver  the  Vaidya—Raychaudhuri
Endowment Award Lecture. I feel greatly honoured. I was a direct student of Late Prof.
A.K. Raychaudhuri and look upon Prof. P.C. Vaidya as my teacher.

I shall describe today a useful mathematical tool that allows us to paste together
two slices of space-time expressed in terms of different coordinate systems on the two
sides of a 3-dimensional hyper-surface. This lecture may be useful to young workers in
general relativity.
 

Matching conditions of space-time slices

Let us take a 3-space S dividing the space-time into two distinct four dimensional
manifolds V+  (interior space-time) and V-  (exterior space-time). If the same coordinate
patch covers V+ and V-  then we demand simply that the components of the metric tensor
and their first derivatives be continuous across S. But we are going to describe a method
which is independent of the coordinate system. We may cut out two slices of 4-spaces
expressed in terms of different coordinate systems and paste them together on the two
sides  of  a  3-space.  The  junction  conditions  then  give  the  relations  between  the
coordinates on the two sides. The method was originally given by Israel (1966, 1967).

The first condition for pasting is that the 3-space will have the same well-defined
intrinsic  geometry  as  viewed  from  the  two  sides.  The  two  4-spaces  V+  and  V-  are
supposed to be covered by the coordinate patches ya

± and the metrics are given by

                                        ds2
±  =  aab

±
 dya

± dyb
±                                                                                        (1)

The Greek indices stand for 1, 2, 3, 4.
If gij   be the intrinsic metric of the 3-space S covered by the coordinates xi   (latin

indices represent 1, 2, 3), so that we have

                                        ds2
S = gij dxi dxj                                                                      (2)

(2) is an invariant known as the first fundamental form [Weatherburn (1957) pp.123-129].
The 3-space  S must have the same intrinsic geometry as we approach it from the two
sides V+ and V-  if
                          gij dxi  dxj   =  aab

+ ya
+,i  yb

+,j d xi dxj =  aab
- ya

-,i  yb
-,j

  d xi d xj                (3)

where  ya,,i   y≡ ∂ a/ x∂ i  . Hence (3) implies



                                                       gij  =  aab ya,i yb,j                                                        (4)

This is known as the matching of the first fundamental form.
Let Na be the unit vector normal to the bounding 3-space S given by the equations

:
                                            aab  ya,i Nb  =  0                                                               (5a)

                                            aab Na Nb =  ± 1                                                               (5b)

The positive sign in (5b) corresponds to a space-like and the negative to a time-like
hyper-surface. Eqn. (5a) is equivalent to three equations. Hence it fixes the ratios of the
four components N1, N2 , N3 , N4  but not their absolute values. Eqn. (5b) could have fixed
the absolute values but as it is a quadratic equation, it has two roots corresponding to two
directions of the normal. One of these corresponds to the future-directed time-line while
the  other  to  the  past-directed  one  [Goldwirth  and  Katz  (1995),  Fayos  et  al  (1996)].
Goldwirth and Katz has illustrated this by Fig. 1. They take a two-dimensional example
of fitting a plane to a cone along the one-dimensional boundary of a circle. The pieces are
numbered  in  the  first  figure.  The  subsequent  figures  1(a)—(d)  show  all  possible
combinations of orientations of the unit normals n and  n  .

                                                          
                                                          Figure    1.                                    



Another condition to be satisfied on the boundary is that the extrinsic curvature of
S relative to V+ and V- on the two sides should be the same. It is measured by the rate of
change of the normal vector [Misner et al (1973) pp. 551-554] (see Fig. 2).

                                                            Figure  2

The extrinsic curvature is given by

                                                  Wij
±  =  ya;ij  aab

± Nb
±                                                           (6)

where
                                  ya;ij  =  ya,ij   + Ga

bg yb,i yg,j  -- Gh
ij ya,h                                        (7)

Here  we  use  a  semicolon  for  a  covariant  differentiation  and  a  comma  for  partial
differentiation. The Christoffel symbols G with Greek indices are formed in 4-space with
the metric aab

± while those with latin indices are formed in 3-space S with the metric gij .
The invariant quantity 

                                                ds2
±  =  Wij

± dxi dxj                                                                  (8)
is called the second fundamental form [Weatherburn (1957)] which should match on the
two sides. 

The matching conditions  described above are purely geometric  conditions  and
Einstein’s field equations have nowhere been used so far.

Examples of Matching

 Santos  (1985)  used  this  method  to  match  a  general  spherically  symmetric
solution representing a shear-free collapsing non-adiabatic fluid having radial heat flow
with a Vaidya metric across a 3-space S. Later Fayos et al (1992) used the above method
to study the matching of the most general collapsing sphere with the Vaidya metric.1 

1 Later Fayos et al (1996) considered the general matching of two spherically symmetric space-times and
the use of Penrose diagrams for the purpose.



Mandal and Banerji (1998) matched the Vaidya metric with the Robertson-Walker
metric. We shall give this matching in a little more detail :
            Let us have a Region I ( 4-space)with the metric :

           ds2
1  =  aab

+ ya
+ yb

+ = {1 – 2m(v)/r1 }dv2 + 2 dv dr1 – r2
1 (d q2 + sin2 q  d f2)       (9)

This is the Vaidya metric where m is a function of the null coordinate v alone. And the
coordinates are : 

                                           ya
+  =  ( r1, q, f,  v)                                                                (10)

In Region II we have the special Robertson-Walker metric with zero spatial curvature
where it is filled with a perfect fluid with the equation of state

                                            p =  g r ,  0 ≤ g ≤ 1/3                                                                   (11)

                     ds2
2
  = dt2

2
  --  t2

2n ( dr2
2 + r2

2 d q2  + r2
2 sin2 q df2 )                                     (12)

where   n  =  2/{3(g + 1)}. Here the coordinates are

                                            ya
-  =   (r2 , q, f, t2 )                                                              (13)

We want to match the metrics (9) and (12) on the bounding 3-space  S with the eqn. r = ƒ
(t). The intrinsic metric will be expressed in terms of the local coordinate system :

                                                 xi  =  (q, f,  t)                                                   (14)
t  is here the proper time. Hence the intrinsic metric of the bounding space S is

                  dsS
2  =  g ij d xi d xj  =   d t 2  -- R2 (t ) ( d q2  + sin2 q d f2 )                    (15)

From the matching of the first fundamental forms :

                                     (d s1
2 )S  =  ( ds2

2)S  =  d sS 
2                                                        (16)

we obtain

                                                 t˙2
2  -- t2

2n r˙2
2   = 1                                                          (17)

                                                     r1
 = r2

  t2
n                                                                                                    (18)

                                    [1 – {2m(v)}/r1] v˙2  + 2r˙2
 v˙ = 1                                                (19)

Here a dot over a symbol represents its derivative with respect to t  .
The unit normal vector Na to S  is given by the eqns.

                                     aab ya,i  Nb  =  0                                                                        (20a)
                                     aab NaNb  =  -- 1                                                                      (20b)



We choose the negative sign on the right of (20b) as the boundary is time-like. Solving
the above eqns. We obtain two values of Na (as explained earlier) corresponding to the
two directions of the normal :

                          N1
a   =   ± [ r˙1  + (1 – {2m(v)}/r1) v˙, 0, 0, -- v˙]                                 (21)

Using eqn.(6) we obtain
                       
                         Wq q  =  ± [(1 – {2m(v)}/r1)r1v  + ˙ r1r˙1] =  Wff /sin2 q                             (22)
                         Wtt    =  [(--mv˙)/r1

2 + v˙˙ /v˙ ]                                                                 (23)

The unit normal vector to S in terms of coordinates in Region II is given by
                            
                         N2

a  =  ± [t2
 –n  t˙2

 , 0, 0, t2
nr˙2 ]                                                               (24)

Using  eqn. (6) we obtain again

                        Wqq  = ± (r2 t2
n t˙2 + n r2

2r˙2t2 3n-1 )  =  Wff/sin2 q                                       (25)
                        Wtt   =  ± ( -- r˙˙ 2 t˙2 t2

n -- 2nr˙2t˙2
2t2

n—1 + nr˙2
3t2

3n--1   + r˙2 t2
n t˙˙ 2 )          (26)

Matching the second fundamental forms we obtain

       r2 t2
n t˙2  + nr2

2 r˙2 t2 
3n—1  =  ± [(1 – {2m(v)}/r1)r1 v  +˙  r1 r˙1 ]                                  (27)

       r˙˙ 2 t˙2 t2
n + 2n r˙2 t˙2

2t2 
n—1 -- nr˙2

3 t2
3n—1-- r˙2 t2

n t˙˙ 2  =  ± {(mv˙/r1
2 ) – (v /˙˙ v˙)}     (28)

Voids and their evolution

 With the construction of bigger and bigger telescopes, astronomers have been able
to get a three dimensional view of structures in the universe. Galaxies were found to form
clusters like stars. The average cluster has a size ~ 5 Mpc. Further studies have revealed
larger structures with sizes ~ 50 Mpc called super-clusters. In addition to these clusters
and super-clusters some gaps were found which were called voids whose dimensions may
be as big as 600 Mpc.[Kirshner et al (1981)]. Later evidence indicated that the voids are
not completely empty but contain gas [Brosch et al (1984)] or dust [ Lindley (1989)] or
dark matter or radiation but are deficient in luminous matter.



Figure 3
Mandal and Banerji (1998) considered a spherically symmetric model of the void

for mathematical simplicity. The void was supposed to be formed by a central spherical
region containing matter and radiation whose density is much below the average (Region
I), surrounded by a spherical shell of pure radiation having the Vaidya metric (Region II).
The metrics are as follows. In Region I : 

dsI
2  =  {1 +  a/(1 + x r1

2 )}2 dt1
2  -- R2 (t1)/(1 + x  r1

2)2 { dr1
2 + r1

2 (d q2 + sin2 q d f  2)   (29)

where  a and  x  are constants. The energy momentum tensor is that of a fluid with heat
flux expressed in the standard form as

             Tm
n  =   (r  +  p)  um  un –  p  dm

n --  qmun --  um  qn

(30)

where qm  represents the heat flux vector orthogonal to the velocity vector um  .
This is a spherical slice cut out of a special case of a solution found by Maiti

(1982).
  In Region II :

dsII
2  =  { 1 – 2m(v)/r2 }d v2 + 2 d v dr2  -- r2

2 (d q2 + sin2 q d f2 )                                  (31)
This is a spherical shell cut out of the Vaidya solution. The combination of Regions I and
II  constitutes the void and  is  embedded  in  an   FRW universe  with  flat space  sections



                                                             Figure 4.
 (Region III) (see Fig. 3).

In Region III : 
    
            dsIII

2  =  dt3
2  -- t3 

2n {dr3
2 + r3

2( d q2 + sin2 q d f2)}                                            (32)

The space-time is filled with a perfect fluid with the equation of state  p =  gr  , 0 ≤g  ≤
and  n = 2/{3(g+1)}. When g = 0, n =  and for g =   , n =  1/2 .                                     (32a)

From the junction conditions the above authors deduce that

                              2m = n2 a0
3 t3

3n--2                                                                          (33)

where a0 is a constant. If n =  , i.e.  g = 0,  m becomes a constant, hence no radiation
comes from Region II. In such a case the Vaidya metric reduces to that of Schwarzschild
with the transformation :

                           v = t2  --  dr∫ 2 /(1 – 2m/r2)                                                                   (34)

Mandal and Banerji (1998) further deduced that t2  of the Schwarzschild metric is related
in this case to t3 of FRW metric in Region III by the equation :
                       t2  =   ±  dt∫ 3/( 1 – 4/9 a0

2 t3
– )

                           =  ± [ t3 + 4/3 a0
2 t3   + 4/9 a0

3 ln | (3t3  -- 2a0)/(3t3  + 2a0)|             (35)

If we want both t2 and t3 to be future-directed we must take the first sign and reject the
second. The above expression agrees with that found by Dey and Banerji (1991). This
choice of sign depends on the choice of direction of the normal to the bounding 3-space.
In this “radiation-free” case ( p = 0, g =  0 ) the co-moving observer finds the bounding
surface to be static, i.e. he finds the void to be static. In other cases the boundary m in
eqn. (33) is not constant and so radiation comes out of Region II , which must be present
at least near the boundary of Regions II and III. We assume that the amount of radiation
coming out of Region II is small compared to the matter density in III. So after some
distance the radiation is absorbed or scattered by matter so as to become non-existent.
Mandal and Banerji (1998) showed that the boundary of the void  satisfies the equation :

                         r3 = u3 =   2[ a0  -- (g/2){3(g  + 1)/(3g + 1)} t3
{(3g+1)/3(g+1)}]                             (36)

This means that the void appears to contract to a co-moving observer, a little away from
the boundary in Region III.

Although Fayos et al (1991, 1992) showed that a Vaidya metric can be smoothly
matched with the general FRW universe, it may appear strange as we are accustomed
with the treatment of the FRW universe in co-moving coordinates where it contains a
perfect fluid with no radiation. But Tupper (1981) showed that stress-energy tensors of
quite different matter distributions may have precisely the same components. Suppose



that  r  , p  be the density and pressure of the perfect fluid filling the FRW universe when
we take co-moving coordinates so that the energy-momentum tensor becomes

                                Tmn  =  (r  +  p  )  u m  un  --  p  gmn

(37)

On the other hand, if the fluid ‘s 4-velocity is vm  when the coordinates are not co-moving
we may have the same components of Tmn  as (37) with an imperfect fluid together with a
null vector lm  representing radiation 
                               Tmn  =  (r  + p)  vm  vn  –  p  gmn  –  W2  lm ln   +  Pmn

(38)

Pmn  is a trace-free tensor of anisotropic pressures orthogonal to vm . The values have been
evaluated by Mandal and Banerji (1998). At least the component v1 is non-zero near the
boundary unlike u1  and the extra term involving v 1  is compensated for by the 3rd and 4th

terms on the right of (38).
Later Ray, Chaudhury and Banerji (2000) generalized the model of the void by

replacing the FRW universe with flat space sections by a general FRW space-time  with
non-zero spatial curvature with the metric given by

                  ds2   =  dt2  --  S2 (t)/(1 + kr2 /4)2 [ dr2 + r2 (d q2 + sin2 q d f2 )]                      (39)

They prove that the matching conditions show that the radial coordinate of the boundary
between the Vaidya  and the FRW space-times is given by
                
                  r  = u3 = 2 tan [ a0 – (g/2)  sin-1 S (1 + 3g) /2 ]  for  k  =  + 1                             (40a)
                           
                             = 2 [ a0  -- (g/2) {3(g + 1)/(3g + 1)}S (1 + 3g) /2 ] for  k = 0                         (40b)

                             =  2 tanh [ a0 – (g/2 ) sinh-1 S (1 + 3g) /2 ]                                             (40c)

Here a0   is a positive constant. Evidently, if  g  = 0, (i.e. the pressure vanishes), the void
remains static, whatever be the value of k in the overall universe.

Discussion

 In a nutshell, this model of the void would go on collapsing while the universe
expands if it was created in the early universe which was not matter-dominated. This is
true even if  the spatial  curvature of  the overall  universe is  non-zero.  But  the rate  of
collapse depends upon the spatial curvature. The rate is fastest for k = + 1, medium for k
=  0  and  slowest  for  k  =  --  1.  In  other  words,  any  in-homogeneity  produced  in  the
otherwise homogeneous early universe tends to be removed. However, if a precursor of
the void created in the early universe survives till the present matter—dominated epoch



the collapse of the void stops. The arrow of time is assumed to point towards the future in
each region. 

The present day cosmologists believe that a small in-homogeneity present in the
early universe at the time of decoupling of matter and radiation increased in size as the
universe expands leading to the formation of structures that we see today. The present
result goes against this belief unless our result is very much model-dependent. However,
we have taken  only  one  inhomogeneous region  in  the  FRW universe.  But,  in  actual
practice, there are several under-dense as well as over-dense regions. Further, we have
considered  the  void  (or  its  precursor)  to  be  spherically  symmetric  for  mathematical
convenience but a look at  Fig. 3 shows that this is not at all justified. Moreover, we now
know that  matter  (including  dark  matter)  is  only  30% of  the  total  energy  while  the
remaining  70% is  called dark  energy whose  exact  nature  is  still  unknown.  The dark
energy is believed to be repulsive producing an accelerated universe at the present epoch.
Better  models  of  voids  and  filaments  need  to  be  given  by  theorists  to  explain  our
observations.  
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