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Abstract

With the detection of Gravitational waves just about an year ago

Einstein‘s general theory of relativity- a space-time theory of gravity,

got established on a firmer footing than any other theory in physics.

Gravitational waves are just propagating disturbances in the gravita-

tional field of extremely strong sources caused by some catastrophic

event associated with cosmic bodies, like binary black hole coales-

cence, or neutron star mergers. As these events happen very far away

in cosmos, hundreds of millions of light years away and the signal

strength would be extremely weak, it requires extraordinary detection

and analysis technology to observe an event. Luckily the joint collab-

oration LIGO-VIRGO, have so far detected two events in September

and December of 2015 during their analysis of observations made with

the laser interferometers over the last few observing sessions. The talk

will give a brief theoretical sketch of the analysis required for describ-

ing the waves resulting from mass motion in the realm of general rel-

ativity, and point out, the serious and sincere efforts of the past fifty

years that went into the final success. An attempt will be made to

point out the enormous scope that is available for the new generation

of students and researchers in pursuing the topic as a new window for

possibly viewing the Universe with the implications for the studies of

Dark matter, Dark energy and Cosmology as a whole.

∗Vaidya - Raichaudhuri award lecture, delivered on 22.September 2016, Depart-

ment of Physics, Lucknow University
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With Galileo’s telescope, the view of the Universe expanded rapidly from
naked eye observations to cover the celestial beauty of Jupiter’s moons, Sat-
urn’s rings and outer planets to the expanding Universe of Hubble that in-
cluded, Galaxies, Clusters and myriads of extra galactic objects. In 1930,
came the next revolution of the enigmatic Radio Universe, lead by Karl Jan-
sky and G Reber, which led one to very high energy cosmic sources like
Quasars, Active Galactic Nucleii, Pulsars and more importantly, the most
profound all encompassing ‘Cosmic microwave Background’ that indicated
the beginning of our Universe. Once the realisation came about emissions
from cosmic sources in two different frequencies, the optical and the radio, it
was a simple task to look for emissions in other frequencies, IR, UV, X-ray
sources. Along with came the bonus of emissions of γ-rays , which completed
the electromagnetic spectrum of Universe being visible in the entire spec-
trum from Radio waves to γ-rays. While it was known that the emission of
radiation from most of these sources were all due to Electromagnetic pro-
cesses, it was not clear upto 1960s, the source of energy for emissions from
objects like Quasars and AGN s, till Hoyle and Fowler put forward the idea
of Gravitational collapse of massive stars, within the framework of Einstein’s
theory of General Relativity which explained Gravitation as the curvature of
space-time.

Of all the discoveries of the human mind, Einstein’s theory of general
relativity is considered to be the most beautiful creation. In fact, it is often
said that the special relativity, which forms a strong basis of modern physics,
along with quantum mechanics, was ripe to be discovered at the turn of the
nineteenth century, and if not Einstein, Poincare or Lorentz would have de-
veloped the theory. On the other hand the general theory of relativity, which
is the epitome of the world of symmetry, assigning freedom from the confines
of coordinate systems (observers) to understand the most important of all
the fundamental interactions-Gravity, is completely the work of one individ-
ual, arising out of thought experiments instead of laboratory experiments or
observations, that preceded all other discoveries in physics.

The most important features that lead Einstein from special to general
relativity are-

1.The equivalence of inertial and gravitational mass of any bodyMi = Mg

known as the principle of equivalence (demonstrated by Eotvos in 1889), also
guided by his thought experiment of a freely falling lift with an observer
inside.
Consider the observer in the elevator dropping two coins side by side as shown
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in figure 1.The observer inside will see them hung in air(a = g) as both the
coins and the elevator are falling with the same acceleration. However, if the
observer has a very accurate measuring rod, he will find that with time the
two coins appear coming closer towards each other. The explanation to this
is quite simple. As the earth’s gravitational field is radially symmetric the
paths of the freely falling coins are along lines converging at the center of
the earth. It is thus that they appear to be moving towards each other. This
means, though the observer cannot measure the gravitational field inside the
elevator, he can measure the variation in the field from point to point, or the
relative acceleration between the particles.

g
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Figure 1: Freely falling elevator (9)

2. effect of gravity on light (figure 2) which implies that light has a curved
path in a gravitational field, as also there appears a frequency shift depending
upon the gravitational potential difference.
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Figure 2: light beam in a freely falling elevator (9)

(νo − νe)/(νe) = v/c = −gH/c2, (1)
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With this Einstein realized that the arena he wanted for general relativity,
was the non Euclidean geometry, (non flat),which requirement was satisfied
by the Riemannian Geometry, an extension of Gaussian curved geometry, as
suggested by his mathematician friend Marcel Grossmann, represented by
the metric ds2 = gijdx

idxj. As one saw in the case of the elevator, two freely
falling particles in a gravitational field have a relative acceleration which in
Newtonian terms can be seen as follows. Consider two freely falling particles
in a gravitational field with their trajectories labeled λ1 and λ2. At time t let
their positions be P and Q respectively, identified in the associated frame by
P (xa) and Q (xa + ηa), all coordinates being functions of t [figure 3].
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Figure 3: two freely falling particles (9)

ηa is a small connecting vector between λ1 and λ2, t being the path parameter.
One can write, their equations of motion to be

ẍa = −(∂aφ)P = −δab∂b(φ)P (2)

ẍa + η̈a = −(∂aφ)Q = −δab∂b(φ)Q (3)

where φ is the gravitational potential in which the particles are falling.
As ηa is very small, one can use Taylor expansion and simplify to get

η̈a = −ηk∂k∂
aφ,

which may be written as

η̈ +Ka
bη

b = 0; Ka
b = ∂a∂bφ. (4)

Ka
b thus represents the relative acceleration between the two particles as

they fall freely in the gravitational field of φ.
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Figure 4: congruence of world lines

Moving on to general relativistic formulation, one can consider a two surface
made of a congruence of geodesics and some connecting vectors ηi as shown
figure 4. Using the equation for absolute derivatives one can get the geodesic
deviation equation

δ2ηi

δs2
+Ri

lkjU
lηjUk = 0. (5)

and then referring it to a local Lorentz frame, one can find the acceleration
equation to be

d2X(a)

ds2
+K

(a)
(c)X

(c) = 0, K
(a)
(c) = R

(a)
(b)(c)(d)u

(b)u(d). (6)

The field equations of general relativity are [ Gij ≡ Rij− 1
2
Rgij = κTij ] along

with the Bianchi identities [Gij
;j = 0], and consequently the conservation

laws [ T ij
;j = 0].

If the mass distribution is static, then for some specific symmetrical distribu-
tions, a few exact solutions have been obtained as given by the Schwarzschild
(spherically symmetric) and the Kerr solutions (axisymmetric) apart from a
few cylindrically symmetric solutions, for the cases of uncharged and charged
matter that are asymptotically flat. On the other hand, when the matter dis-
tribution is nonstatic, then one expects the field surrounding the distribution
to vary slowly and the change could propagate all through the space–time as
small perturbations of the background field. In such a situation, one could
write the general metric solution as, gij = gbij + hij . As Einstein had pointed
out, things are made much simpler when one assumes, the background metric
to be flat, gbij = ηij .
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Considering the field outside the matter distribution, and substituting for the
components of the Ricci tensor, the metric ηij +hij and its derivatives in the
equations, Rij = 0, one finds for the perturbations hij the set of equations

�hij + hk
k,ij − hk

i,jk − hk
j,ik = 0, (7)

where � represents the usual flat space D’Alembertian, with the second and
higher powers of hij being ignored.
It is understood that solutions to this equation cannot be unique, as one
can have a general coordinate transformation, and in order to remove this
ambiguity, one can choose a particular gauge, and one often chooses the
so–called, harmonic or Lorentz (also called deDonder) gauge, as given by
gijΓk

ij = 0, which in terms of h yield the relations,

h̄j
i,j = 0, h̄j

i = hj
i −

1

2
δjih

k
k. (8)

With this choice of gauge, the equations reduce to the simple flat space wave
equation for the tensor potential, hij ,

�hij = 0. (9)

for which one can write the general solution as a superposition of plane
monochromatic waves,

hij = Aije
iklx

l

+ A∗

ije
−iklx

l

, (10)

with A and A∗ representing the complex amplitudes and kl the wave covector,
satisfying the orthogonality relation, ηijk

ikj = 0.
The gauge condition yields four constraints on the ten complex amplitudes,
given by the relation

Aijk
j =

1

2
Aj

jki. (11)

However, as the coordinate freedom is still left within the gauge as specified
by

�ξi = 0, A′

ij = Aij + kiξξ̂j + kjξξ̂i, (12)

ξk(x) = i[ξ̂ke(iklx
l) + ξ̂∗ke(iklx

l)], (13)

where ξ̂ are constants by choosing them appropriately, one can make four
of the Aijs zero. In order to remove this freedom, one needs four additional
constraints, which is achieved by choosing a globally defined time like vector
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field ui such that, Ai
ju

j = 0, Ai
i = 0. Thus there are eight constraints on the

ten complex amplitudes as given by

Aiju
j = 0, Aijk

j = 0, Ai
i = 0, (14)

indicating that the Aijs are transverse and traceless. Such a choice of gauge
is known as T–T gauge or transverse traceless gauge.
In terms of the metric potentials, the choice of T–T gauge yields,

hi0 = 0, h j
a ,j = 0, hi

i = 0. (15)

As there are only two degrees of freedom associated with the waves, it implies
physically that there are only two degrees of polarisation associated with
these waves.Thus, for a plane gravitational wave propagating along the z-
direction, in a Cartesian system, the solution may be written explicitly as

hTT
XX = −hTT

Y Y = R{a+ e[−iω(t−z)]}
hTT

XY = hTT
Y X = R{a×e[−iω(t−z)]} (16)

with a+ = A11 = −A22 and a× = A12 = A21, denoting the two independent
states of polarisation.
In the case of a monochromatic plane gravitational wave, propagating along
the z-direction, the space-time metric is given by

ds2 = dt2 − (1− hXX)dx
2 − (1− hY Y )dy

2 + 2hXY dxdy − dz2 (17)

and the only components of the curvature tensor that are nonzero are

(i) Rx
0x0 = −1

2
hTT

XX,00, (18)

(ii) Ry
0y0 =

1

2
hTT

Y Y,00, (19)

(iii) Rx
0y0 = Ry

0x0 = −1

2
hTT

XY,00. (20)

Choosing a comoving frame ui = (1, 0, 0, 0) and the deviation vector ηi =
(0, ε, 0, 0), equation (5) yields

(i)
∂2ηx

∂t2
=

1

2
hTT

XX,00 ε, (21)

(ii)
∂2ηy

∂t2
=

1

2
hTT

XY,00 ε. (22)
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On the other hand if the deviation vector ηi = (0, 0, ε, 0) then the equations
are,

(iii)
∂2ηx

∂t2
=

1

2
hTT

XY,00 ε, (23)

(iv)
∂2ηy

∂t2
= −1

2
hTT

XX,00 ε. (24)

It is clear from these four equations that the passing wave induces oscillations
of the particles in the ring depending upon the nonzero components of the
tensor hij.
If hXY = 0, and hXX = −hY Y 6= 0, then the ring of particles oscillates as
shown in figure 5(b), along the X and Y directions, with hXX changing sign.
On the other hand if the wave is such that, hXX , hY Y are zero but hXY 6= 0,
then the particles oscillates as shown in figure 5(c).
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Figure 5: gravitational wave passing thrugh a ring of particles. (a) Before,
(b)wave with + polarisation, and (c) wave with x polarisation

Do these waves carry energy and angular momentum?

As has been pointed out in references (8), (14), (7), the gravitational
field energy cannot be localised and thus it is difficult to separate the source
energy and the field energy from the total energy momentum tensor T ij that
appears in the field equations. However, in the case of waves as described here,
one has an advantage that in the linearised theory, one can still construct
a pseudotensor that characterises the energy momentum for gravitational
waves.
Writing the general energy momentum conservation law coming from the
field equations, T j

i ;j = 0, as (7)

1√−g
[
∂(T j

i

√−g

∂xj
]− 1

2

∂gjk
∂xi

T jk = 0, (25)
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one can see that it gives the simple conservation law for the source when the
potentials gijs are constants. Rewriting it as

∂

∂xj
[(−g) (T j

i + tji )] = 0, (26)

one can see that the total energy momentum has been separated into a part
representing the source energy and the remaining the field energy tji called the
Landau–Lifshitz pseudotensor, obtained from a super potential, Ψikl, defined
through the equation

(−g)[(Rik − 1

2
Rgik) + tik] = Ψikl

,l. (27)

The L–L super potential, when expressed in terms of the metric and its
derivatives, is given by (1)

Ψikl =
√
−g δip {g(gkpglm − gkmglp)},m. (28)

With this definition, one then calls the total energy momentum, (−g) (T ik +
tik) the ‘effective energy momentum’, of the space-time governed by the cho-
sen metric, that satisfies the usual divergence–free relation, (T ij + tij),j = 0,
such that one can use the volume integral and recover the effective energy.
In the case of linearised gravity, with the perturbations defined over a flat
background metric ( gij = ηij + hij), as shown in (8), for the short wave
approximation, defined by (λ/R ≪ 1, a ≪ 1), the effective stress tensor
averaged over several wavelengths is given by

tij =
1

8π
{< Rij(h

2) > −1

2
gBij < R(h2) >}, (29)

which, for the flat background, yields, in the TT gauge the expression,

< tij >=
1

32π
< hkl

,i hkl,j > . (30)

This is also commonly referred to as Issacson stress–energy tensor for grav-
itational waves, (12), (28), when the averages are taken over one period of
oscillation in time and spatial regions of the size of a wavelength of distance
in all directions.
Going back to the field equations one can see that on using the harmonic
gauge h̄j

i,j = 0, the equations reduce to

� h̄ij = −2κτij , (31)
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whose integrability requires (τ ji ),j = 0.

One can write the solution of (31) in terms of a retarded Green’s function,
(4)which, after integration with respect to t’, yields,

h̄ij = 4

∫

{[τij(x
′, t− |x− x′|)]
|x− x′| } d3x′. (32)

As τij satisfies the conservation law, τ ij,j = 0, one can write this as

(i) τab,b + τa0,0 = 0

(ii) τ 0b,b + τ 00,0 = 0. (33)

indices a,b taking values 1,2,3. Taking the appropriate moments of these
equations and simplifying one gets finally

∫

τabdV =
1

2

∂2

∂t2

∫

ρ(r′, t)xaxbdV =
1

2
Ïab, (34)

where Iab is the second moment of the mass distribution at the source related
to the moment of inertia tensor (8),

I
ab =

∫

ρ(r2δab − xaxb)dV = (δabIcc − Iab), (35)

and to the quadrupole moment Qab (7)

Qab =

∫

ρ(x, t)(3xaxb − r2δab)dV = (3Iab − δabIcc ). (36)

With this one can finally write down the approximate solution for (31),

h̄ij =
−2Ω2

r
Iije

[iΩ(r−t)], (37)

Ω being the frequency. Equation (37) is the well known ‘quadrupole formula’
for gravitational radiation.
The individual components of the metric tensor hij for a plane gravitational
wave in T–T gauge, moving along the z-direction, are now given by

hZi = 0, (i = 0, 1, 2, 3); hXY = −2Ω2

3r
QXY e

[iΩ(r−t)]

hXX = −hY Y = −Ω2

3r
(QXX −QY Y )e

[iΩ(r−t)], (38)
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and the energy flux carried along the direction of propagation is

tz0 = (
G

36πr2c5
)[(

...
QXX −

...
QY Y

2
)2 + (

...
QXY )

2]. (39)

In order to express the energy and angular momentum carried by the waves,
in an invariant form, one can use the 3-dim. symmetric, unit polarisation
tensor eab (7), which determines the nonzero components of the metric tensor
hab in the appropriate gauge (h0a = ha0 = h = 0) and satisfies the relations

e0a = 0, eabn
b = 0, eabe

ab = 1, (40)

na being the unit vector along the direction of wave propagation.

The intensity of radiation of a given polarisation into a given solid angle
dΣ is then

dI =
1

72π
(
...
Qabe

ab)2dΣ, (41)

which depends implicitly on the direction n, because of the condition of
transversality. Summing over all polarisations then gives the total angular
distributions,

dI = (
G

36πc5
)[
1

4
(
...
Qabn

anb)2 +
1

2

...
Q

2

ab −
...
Qab

...
Q

a

cn
bnc]. (42)

The energy loss of the system per unit time can be found by averaging dI
dΣ

over all directions and multiplying by 4π as given by

dE

dt
= −(

G

45c5
) <

...
Qab

...
Q

ab
> (43)

dJk

dt
= −(

2G

45c2
)εklm <

...
Q

la...
Q

m

a > . (44)

In the quadrupole approximation, which also happens to be the lowest order
post–Newtonian approximation, one can express the amplitude, frequency,
and luminosity of the emitted radiation (35), which depend only on the den-
sity ρ and velocity fields of the Newtonian system as given by
(a) the amplitude in the Lorentz gauge,

hab =
2

r

d2Qab

dt2
, Qab =

∫

ρxaxb d3x, (45)

(b) the frequency,

f0 = ω0/2π =
√

Gρ̄/4π, (46)

12



where ρ̄ is the mean density of mass–energy in the source.
(c) the luminosity expressed in terms of the local stress–energy in the T–T
gauge is given by

Lgw =
1

5
(Σj,k(

...
Qjk)

2 − 1

3
(
...
Q)2, (47)

where Q is the trace of Qjk, an equation which may also be used to estimate
the back reaction on a system emitting gravitational radiation(35).

Detection of gravitational waves

Late last year (2015), the world celebrated the one hundredth anniver-
sary of general relativity and Einstein’s prediction of gravitational waves by
detecting through LIGO (Laser Interferometric Gravitational wave Observa-
tory) the first signal of the waves arriving on earth, produced far away in the
cosmos, by coalescence of two medium–sized black holes .(15).
As one can see from the expression for the energy carried by the wave (43),
its strength is of order c−5, and thus would require an extremely sensitive
set of apparatus and very sophisticated methods of data analysis to detect
signals of such low strength and to separate them from all other forms of
noise.

The experimental search for gravitational waves from cosmic sources
started with J. Weber’s pioneering idea of using a resonant bar detector (47),
which was essentially a suspended homogeneous metal bar, on which an im-
pinging gravitational wave would excite mechanical vibrations that could be
transferred to electromagnetic signals by piezoelectric transducers which can
be amplified and recorded. The excitation is mainly due to the relative accel-
eration between the particles of the bar caused by the passing wave. When
two such antennas separated by a large distance (in the case of Weber, the
bars set up were in Maryland, Virginia and Argonne National lab in Chicago)
record similar signals coincidentally, it was assumed that the disturbance was
caused by a cosmic source far away from the earth and attributed to gravi-
tational wave. (Although Weber announced the recording of such signals in
1969 claiming the detection of gravitational waves, it was very soon found to
be not correct as no other experimental group, even with increased sensitiv-
ity systems could find any coincident signal.)

Though there have been continuous efforts to improve the sensitivities of
the bar mode detectors, the attention of the experimental community turned
towards the beam mode detectors, where one uses laser interferometry, con-
sisting of four masses hung from vibration–free support systems with their

13



http://www.sciencemag.org/news/2016/02/remembering-joseph-weber-

controversial-pioneer-gravitational-waves

Figure 6: Joe Weber and his antenna

separation being monitored by a highly sophisticated optical system.
The four masses (mirrors) are placed at the ends of two orthogonal arms such
that two are closer to each other with the other two at the far ends of the
arms, and the arm’s lengths being almost equal (L1 ≃ L2 = L, such that)
the change (△L(t), is directly proportional to the output of the interferome-
ter (photodiode). When a gravitational wave passes through such a system,
having frequency higher than the pendulum’s natural frequency of ∼ 1Hz,
the acceleration induced by the wave pushes the masses (as though they
are freely falling) which causes the arm length difference △L = L1 − L2 to
change. Depending upon the polarisation of the impinging wave, (h+or h×)
the interferometer’s output would be a linear combination of the two wave
fields (43)

△L(t)

L
= F+h+(t) + F×h×(t) ≡ h(t) (48)

where F+, F× are of order unity having quadrupolar dependence upon the
direction and orientation to the source (42). The h(t) in (48) is called the
strain of the gravitational wave and the time evolution of h(t), h+(t), h×(t)
as waveforms.

A typical waveform arising out of inspiraling compact binary system appears
as shown in figure 8, which has been computed using Newtonian gravity for
the orbital evolution and the quadrupole-moment approximation for wave
generation (16). As the inspiralling binaries get closer, one finds increasing
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http://www.skyandtelescope.com/wp content/uploads/LIGO      schematic

Figure 7: LIGO interferometer

amplitude and the upward sweeping frequency (often referrred to as chirp)
of the waveform, with the amplitude ratio for the two polarisations going as

amph+

amph×

=
2 cos i

1 + cos2 i
, (49)

i being the inclination of the orbit to observer’s line of sight, and the orbital
eccentricity determining the waves’ harmonic content. For simplicity, if the
orbit is considered circular, then the rate at which the frequency sweeps or
‘chirps’, df/dt (also referred to as the number of cycles spent near a given
frequency n = f 2(df/dt)−1, is determined solely by the binary’s chirp mass

in terms of the masses of the binary components, Mc ≡ (M1M2)3/5

(M1+M2)1/5
. Thus,

the amplitudes of the two waveforms (h+, h×) are determined by the chirp
mass, distance to the source, and the orbital inclination. With the prelim-
inary information coming from the qudrupolar (near Newtonian) formula,
the general relativistic effects add further information, through the wave-
form modulation coming from the rate of frequency sweep, depending upon
the binary’s dimensionless ratio, η = µ/M, with µ = M1M2/(M1 +M2) the
reduced mass and M = (M1+M2), the total mass, as well as on the spins of
the two bodies. Two of the important effects worth noting are (i) the back
scattering of waves due to the curvature of the binary space–time (45), pro-
ducing tails that act back on the binary modifying the inspiral rate that can
be measured and (ii) the Lense–Thirring drag arising from the inclinations
of the spin axes of the components with respect to the binary’s orbital plane,

15



Figure 8: Typical waveforms from The inspiral of a compact binary computed
using Newtonian gravity for the orbital evolution and the qudrupole moment
approximation for the wave generation (16)

causing the orbit to precess, which, in turn can modulate the wave forms. In
order to incorporate these relativistic modulations of the basic wave forms,
while detecting, one uses a technique called the matched filter, where the
incoming signals are matched to already prepared theoretical templates with
several different combinations of parameters, and the best matched template
will give the details of the wave form (43).

As Blanchet points out (17), the basic problem that one faces in relating
the amplitude hab seen in the wave zone with the source material stress en-
ergy, Tij , is due to the approximation methods in general relativity. While
the post–Newtonian methods may appear satisfactory in the weak field limit
(valid only in the near zone), its inadequacy appears while trying to include
the boundary conditions at infinity, which affects the proper determination
of the radiation reaction force. While the post-Minkowskian approximation
appears valid all over the space–time as long as the source is weakly grav-
itating, it faces hurdles while treating the multipole approximation outside
the source with respect to the far zone expansion.

In the early 1970s, while several groups were still trying to check Weber’s
claim of the detection of gravitational waves, an altogether different set of
observations confirmed the existence of gravitational waves indirectly. Hulse
and Taylor, during a routine search for pulsars, from the Arceibo Observatory
had recorded several new pulsars, amongst which was the discovery of the
first binary pulsar PSR 1913 + 16, which was identified as a set of two neutron
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stars with almost equal masses, (Mp = 1.39±0.15M⊙, Mc = 1.44±0.15M⊙),
moving on a fairly eccentric orbit (e = 0.617155 ± 0.000007), quite close to
each other having the projected semi–major axis a sin i ∼ 7 · 1010cm (? ).
Continuous monitoring of the binary pulsar over the next few years, yielded
a much better evaluation of the orbital parameters (39), which clearly re-
vealed the binary pulsar system to be the best laboratory for testing general
relativity. As summarised by Weisberg and Taylor (2005) the measured or-
bital parameters over the period, 1981– 2003, are as listed in the table below
(46)

Table 1: Measured Orbital Parameters for B 1913 + 16 System
fitted parameter value

aP sin i(s) 2.3417725 (8)

ω0 292.54487 (8)

e 0.6171338

〈ω̇〉(deg/yr) 4.226595 (5)

T0 52144.90097844(5)

γ(s) 0.0042919 (8)

Pb 0.322997448930(4)

Ṗb(10
−12s/s) -2.4184(9)

While the first five parameters of the table are derivable purely from non–
relativistic analysis, the next three, the mean rate of advance of periastron
〈ω̇i〉, gravitational redshift and time-dilation parameter γ and the orbital
period derivative Ṗb come only from general relativistic corrections.

One of the most important results pointed out was the fact that the
orbital period of the system was changing as given by Ṗb, which can happen
only with the loss of the orbital energy bringing the two components closer.
Taylor et al. found the secular decrease of the orbital period to be consistent
with loss of energy through emission of gravitational radiation as predicted
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by general relativity (40), which is calculated on the basis of suggestion from
Wagoner(13), and Esposito & Harrison(26), using the analysis of Peters and
Mathews (30), as given by

Ṗb = −192πG5/3

5c5
(
Pb

2π
)−5/3(1− e2)−7/2 · (1 + 73

24
e2 +

37

96
)

e4[mPmc/(mP +mc)
−1/3]. (50)

As the relativistic variables 〈ω̇〉 and γ, both measurable quantities, depend
upon the masses of the binary components as given by

〈ω̇〉 = 3G2/3c−2(Pb/2π)
−5/3(1− e2)−1(mp +mc)

2/3 (51)

and
γ = G2/3c−2e(Pb/2π)

1/3mc(mP + emc)(mp +mc)
−4/3, (52)

inserting the measured values and solving for the masses, one finds

mP = 1.4408± 0.0003M⊙, ; mc = 1.3873± 0.0003M⊙. (53)

Using these in the above (50), one can get the orbital period decay rate to
be, (Ṗb)GR = (−2.40247± 0.00002)× 10−12s/s.
.

As Damour and Taylor (24) argue, there would be some effect on the pe-
riods, both theoretical and observational, as a result of galactic acceleration
of the system and the motion of the sun, which in fact has several compo-
nents that add up to (Ṗb/Pb)

obs = −86.79 ± 0.19(gal)± 0.65(obs)10−18/sec,
and the corresponding theoretical estimate yields (Ṗb/Pb)

GR = −86.0923 ±
0.0025(gal)10−18/sec, yielding the ratio of the observed to the theoretical
values of the periods to be

(Ṗb)
obs/(Ṗb)

GR = 1.0081± 0.0022(gal)± 0.0076(obs), (54)

which is an excellent agreement. This orbital decay in period due to grav-
itational radiation damping should cause a shift in the epoch of periastron
as shown in the figure 9, where the theoretical curve (solid line) and the ob-
served data points are plotted (46), which shows the remarkable agreement
of the data collected over almost thirty years.
According to Blanchet (17), to observe the final stages of the inspiralling
binary coalescence, by the ground based detectors, one requires very high
accuracy templates as predicted by general relativity, and this is achieved
by using a higher order post–Newtonian wave generation formalism. This
has indeed been achieved to a good degree of applicability, and a host of

18



a
b

Figure 9: (a)Orbital decay of PSR 1913+16 during 1975 to 2003,producing
the change in period decay (b) orbit changes leading to coalescence schematic
(46).]

investigations seem to have demonstrated that the post–Newtonian preci-
sion required to successfully implement an optimal filtering technique for the
existing detectors (LIGO and VIRGO) to correspond upto 3PN order (c−6)
for neutron star binaries, beyond the quadrupole moment. ((21), (5), (38),
(32),(29),(23)). Whereas these techniques of calculations would suffice to dis-
cuss wave emission from binary neutron stars and white dwarfs, they would
be found wanting when it comes to the discussion of binary black holes, par-
ticularly when one of the components is massive. Modeling the merger of two
black holes requires numerical relativity (35), as calculating the wave forms
(templates)requires full solutions of Einstein’s equations.

As reviewed by Centrella et al (19) mergers of comparable-mass black-
hole binaries are expected to be among the strongest sources of gravitational
waves, wherein the final death spiral of a black-hole binary encompasses
three stages called inspiral, merger, and ringdown phases. During the inspiral
phase, the orbits of the binaries get circularised due to the emission of grav-
itational waves and further the black holes spiral together in quasi–circular
orbits, as the orbitaltime scale would be much shorter than the timescales
on which the orbital parameters change. Due to the large separation between
the components one can treat them as point particles and thus apply the
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orbital dynamics as was done for the case of neutron star binaries (31). The
wave forms can be calculated using the post–Newtonian equations in terms
of v2/c2 ∼ GM/Rc2, R being the binary separation (18), and one finds that
the wave form would have the characteristic of a ‘chirp’, as defined earlier. As
the black holes get closer, the weak field limit will not be valid in the merger
phase, as the strong field dynamical region of general relativity requires the
numerical treatment of Einstein’s equations (a three–dimensional simulation
of solutions). At this stage the black holes get close enough to merge and
form a single, bigger black hole which could be highly distorted. Finally, this
distorted remnant black hole could settle down as a Kerr black hole, after
shedding all the nonaxisymmetric modes in the form of gravitational radia-
tion known as ‘ringdown’ phase.

The order of magnitude estimates for the amplitudes of the waves emitted
at different phases is given by (35).

(a)the inspiral phase; hb ∼ 2M2/rR ≃ (2/r)M5/3Ω2/3, (M the mass, R is
the orbital radius, r distance to the source, Ω the orbital angular frequency),
with the luminosity, Lb ∼ (4/5G)(Mc/R)5. As the orbital radius shrinks, the
emitted frequency increases towards a chirp, with chirp time for equal mass
binary to be tchirp = Mv2/2Lb ∼ (5M/8)(M/R)−4.

(b) As the merger stage approaches, with the distance between the com-
ponents closer to the last stable orbit (R ∼ 6M), the frequency reaches the
value, flso ∼ 220(20M⊙/M)Hz. In the case of unequal mass binaries the coa-
lescing time as measured from the rate of period change, Ṗb = −192π

5
(2πM

Pb
)5/3,

is tchirp = (5M
96ν

(M
R
)−4, where M is the total mass of the two components, and

M = ν3/5M , the chirp mass, with ν = µ/M . one can see from these numbers
that, while the binaries with large mass ratios can spend a long time in highly
relativistic orbits, those with equal mass are expected to merge after being
in this regime for only a few orbits.
It may be pointed out that the famous binary, Hulse–Taylor pulsar is ex-
pected to merge in just about 300 million years as the orbit is shrinking at
the rate of ∼ 3.1mm/orbit.

In the case of massive black hole binaries, as they will be perturbed as
they get closer, it is necessary to understand the evolution of black hole
perturbations. Vishveswara (45) was the first to discuss the consequence of
black hole perturbation by the back scattering of the gravitational waves,
following an approach initiated by Regge and Wheeler (10), for the case of

20



Schwarzschild blackhole, which was followed up with detailed discussions by
Zerrilli, (49), and later for the perturbations of the Kerr metric by Teukolsky
(41). However, the most detailed discussion of the perturbations of blackhole
spacetimes was done by Chandrasekhar et al, which can be studied from (3).

These perturbed black holes were found to exhibit ‘quasi–normal modes’
of vibration that emit gravitational radiation whose amplitude, frequency,
and damping time are characteristic of the black hole‘s mass and angu-
lar momentum, the only two features of a Kerr black hole. The effective
amplitude of the waves is of the form heff ∼ 4ανM

πr
, which, for a pair

of 10M⊙ black holes, at a distance of about 200 Mpc, turns out to be
( ν
0.25

)( M
20M⊙

)(200Mpc
r

)10−21, and for super massive black holes at cosmologi-

cal distance is 3× 10−17( ν
0.25

)( M
2×106M⊙

)(6.5Gpc
r

)(35). As the equations of gen-
eral relativity are a set of coupled nonlinear, second order partial differential
equations, the details of the dynamics of the merger of black holes are not
accessible for analytic treatment and one resorts to numerical approach.

As pointed out by several reviewers, Hahn and Lindquist (27) seem to be
the first in 1964, to have tried the simulation of the dynamics of, head-on
collision of two equal mass black holes, using a two dimensional axisymmetric
approach, which they found was not being accurate after 50 time steps. Al-
most after a decade, Smarr et al. reconsidered the problem, using the ADM
formalism (canonical 3+1 formalism (2)) with improved coordinate condi-
tions, which led them in spite of the difficulties of instabilities, and large
number errors, to some information about the spectrum and total energy of
the gravitational waves emitted in the zero frequency limit (37).

However, the necessity to use numerical methods and computer simula-
tion gained importance with the attempts to detect gravitational waves in
the beam detector–like LIGO, in the nineties, as they are sensitive only at
the frequencies emitted by black hole mergers. As the signal–to–noise ra-
tios of ground based detectors are fairly modest, constructing templates to
pattern the wave forms for this device was very important for data analysis
which required numerical simulations. This activated several groups of nu-
merical relativists trying to develop three dimensional codes for relativistic
hydrodynamics using super computers which became important (19),(20).
The successful application of numerical methods and simulations during the
period 1990 to 2006, with the revolutionary idea of Pretorius (34), advanced
the developments in numerical relativity as applied to the detection of grav-
itational waves immensely, resulting in the final detection of gravitational
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waves by LIGO/VIRGO collaboration in 2016.

Figure 10: The gravitational-wave event GW150914 observed by the LIGO
Hanford (H1, left column panels) and Livingston (L1, right column panels)
detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC.
For visualization, all time series are filtered with a 35–350 Hz bandpass filter
to suppress large fluctuations outside the detectors’ most sensitive frequency
band, and band-reject filters to remove the strong instrumental spectral lines
seen in the Fig. 3 spectra(15)

It is well known that the electromagnetic waves, passing through the
intervening matter between the source and the observer, do undergo some
changes like frequency modulation, Landau damping etc.,which in a way gives
one the information about the medium through which the waves are passing.
Can there be any similar effect on gravitational waves passing through mat-
ter? Further the analysis above is restricted to purely linearised solution of
Einstein’s equations. As the intervening space is not empty it is important
to consider the space-time perturbations for non-flat metric. This question
was considered by Ehlers et al, a short discussion of which follows.

Propagation of gravitational waves through matter

Starting with the perturbations on a non flat background gij = (gij)B+ĝij
one can set up the equations for perturbations, for the case of perfect fluid
distributionas given by(25)

P ij
ab ĝij ≡[(2hi

(ah
c
b)∇j∇c − hi

ah
j
b∇2 − gijhc

ah
d
b∇c∇d) + αhab(g

ij∇2
u+

2∇(iuj)∇u + 4(∇du
i∇[duj)))− (ρ− p+ 2Λ)hi

ah
j
b](ĝij) = 0. (55)
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The characteristic equation, given by the zeroth order equation of the above
hirarchy,gives the dispersion relation which is expressed as

(gablalb)
2[(uaub − c2sh

ab)lalb](u
ala)

6 = 0. (56)

shows that there exist three modes

(i) the gravitational wave mode, given by the Hamiltonian H = 1
2
gablalb

propagating along the null geodesics having the tangent vector T a = la,

(ii) the sound wave mode given by H = 1
2
[(c2sh

ab −uaub)], propagating
along the sound rays, with tangent T a = ω( csk

a

k
+ ua) , and

(iii) the matter mode given by H = uala , moving along matter rays,
T a = ua, From the general formalism,that can be referred to in (25),one sees
that while the zeroth order gives the dispersion relation,the first order gives
the transport equation from which one can set for the primary amplitudes
the set of ordinary differential equations,

(∇l +
θ

2
)

(

a
(0)
+

a
(0)
×

)

= 0. (57)

This implies that the change of the complex vector (a+, a×) along a ray
consists of a rescaling by a positive factor proportional to the square root
of the cross–sectional area of a small bundle of rays, just as in the case of
gravitational waves in vacua. The transport preserves linear, circular, elliptic
polarisation, helicity and ellipticity. Further it also implies that the Issacson
stress tensor (defined in vacuum)

T̂ ab =
1

4π
(|a+|2 + |a×|2)lalb, (58)

which represents the effective energy momentum tensor of the wave, is con-
served, ∇aT̂

ab = 0.
The transport equation for the first order primary amplitudes is then given
by,

(∇l + θ/2)(a
(1)
+ ) =

1

2
(ρ− p + 2Λ)((a

(0)
+ )+

+
1

2
eij{[2∇c∇i +∇i∇c)δ

d
j − δci δ

d
j∇2 − hcd∇j∇i](v0cd)}

(59)
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and a similar one for a×.

Using the definitions of the curvature tensor, Rh
ijk, and the Weyl tensor,

Ch
ijk , along with the field equations,one finds that in a conformally flat

(Ch
ijk ) = 0 background space time the above equation (59) reduces to

(∇l + θ/2)(a
(1)
+ ) +

R

3
((a

(0)
+ ) =

1

2
eij+[4∇i∇cδdj − δci δ

d
j∇2 − hcd∇j∇i)](v0cd).

(60)

which exhibits the possibility of the background curvature R and the nonlin-
ear derivatives of the primary amplitudes v0 possibly influencing the trans-
port of v1, the correction to the primary amplitude. Instead of a perfect fluid
if one has a dissipative fluid with the energy momentum tensor

Tij = (ρ+ p)uiuj + pgij − 2ησij − ζθhij, (61)

where, apart from the usual definitions of p, ρ, ui, one has η, ζ, σij, θ repre-
senting the shear viscosity, the bulk viscosity, the shear tensor, and the scalar
of expansion, respectively then the perturbed field equations(33)

R̂ij = κ[T̂ij −
1

2
(gijT̂ + ĝijT )] (62)

give, after using the gauge condition ĝabu
b = 0, along with the fact that the

unperturbed streamlines are geodesics, the set of equations

H ij
ab R̂ij = (κ/2)[ĝab(ρ− p+ ζθ) + hab(4ζθ̂/(1 + 3c2s))− 4ησ̂ab], (63)

with

H ij
ab = hi

ah
j
b − αhabu

iuj, (64)

θ̂ = ûk
,k +

gka

2
(gka,bû

b + ĝka,bu
b) +

ĝka

2
gka,bu

b, (65)

∇j ûi = ûi,j −
ub

2
(ĝib,j + ĝjb,i − ĝij,b) + {ij, b}(ukĝ

kb + ûb). (66)

Applying the high frequency approximation and associated ansatz and equat-
ing the coefficients of ǫ terms, the leading order ǫ−2 yields the dispersion rela-
tion as earlier, with its determinant being referred to the tetrad (ua, ka, ea1, e

a
2)

l4ω6[ω2 − c2sk
2] = 0, (67)

which gives, as in the case of perfect fluid distribution, the three modes
l2 = 0, corresponding to the gravitational waves,moving along the null rays

24



with T a = la, the sound wave mode H = 1
2
[c2sh

ab−uaub)lalb, with rays having
the tangent T a = ω(csk

a/k+ua) and the matter modeH = uala, with tangent
vector ua.
If one now considers the quasi-parallel transport of ea1 and ea2 as defined in
(? ), and simplifies the transport equation for the primary amplitudes, one
gets the simple relation,(33)

[li∇i +
1

2
∇il

i + κηω]eab+ fab = 0 ⇒ [∇l +
1

2
∇il

i + κηω)

(

a
(0)
+

a
(0)
×

)

= 0, (68)

an equation similar to the one with perfect fluid but with an extra term
proportional to the viscosity η.
Writing in terms of the total amplitude A2 = 2(|a+|2+|a×|2), the equation for
the amplitude transport in the dissipative fluid for the gravitational waves,
comes out to be [Prasanna 99]

(D +∇ili)A
2 = −2κηωA2, (69)

clearly showing the presence of a damping term due to shear viscosity, which
seems to indicate that in the presence of viscosity, the propagation of grav-
itational waves could be influenced by the medium, a result that requires
further investigation.Thus the detection of gravitational waves could be open-

ing anew window to look at the unknown Cosmos more effectively.

Finally it is worthwhile to consider how the LIGO project was commis-
sioned and carried out to finally achieve the findings. “LIGO research is
carried out by the LIGO scientific collaboration (LSC), a group of more than
1000 scientists of the collaboration.from universities around the U.S. and in
14 other countries. More than 90 universities and research institutes in the
LSC develop detector technology and analyze data; approximately 250 stu-
dents are strong contributing members of the collaboration.The LSC detec-
tor network includes the LIGO interferometers and the GEO600 detector.The
GEO team includes scientists at the MPI for Gravitation physics (Albert Ein-
stein Institute AEI), Leibnitz Universitat, Hannover alongwith partners at
the university of Glasgow, Cardiff university, the university of Burmingham
and few other universities in the UK,and the university of Balearic islands in
Spain”. The Indian efforts in the successful detection of gravitational waves,
has given stimulus to the project LIGO-India, also known as INDIGO which
is a planned advanced gravitational wave observatory to be located in India
as part of the world wide network. The project received in principle approval
from the government of India in March 2016. LIGO-India is planned as a
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collaborative project betwen a consortium of Indian research institutes and
the LIGO laboratory in the USA, along with its international partners in
Australia, Germany and the UK. Thus the Indian scientific community from
research institutes and universities,faculty and students (of Physics, Math-
ematics and Engineering) have a very ambitious goal to look forward to in
observing analyzing and creating new science of the Cosmos stimulating both
the academics and the intellect.
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