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1. INTRODUCTION ‘ ‘ ,
This year’s “Vaidya-Raychaudhuri Endowment Award Lecture” has the added
significance that it is-also the fiftieth year of discovery (invention) of the Vaidya
metric. First, I would like to thank the members of the selection committee for
giving me this honour in this special year. This is the third Vaidya-Raychaudhuri
Endowment Award (VREA) lecture. The second VREA lecturer complained of
a feeling of inadequacy and noted the difficulty in saying something befitting the
stature of these two doyens of Relativity: Professor P.C.Vaidya and Professor A.K.
Raychaudhuri. The person who expressed these feelings was Professor Jayant
Narlikar. If he had such feelings, you can imagine mine. Professors Vaidya,
Raychaudhuri, Mukunda and Narlikar are enough to overawe many of us. As if
they are not enough, I find Sir Fred Hoyle in the chair today! My only consolation
is that I may be simplifying the task of the next VREA lecturer by reducing
the level of expectations. Professor Dirac once said that the advent of Quantum
Mechanics enabled even mediocre persons to do great work in the 1930s. Taking
a cue from that, I thought, I would talk about “Black Hole Evaporation and
Unitarity Violation” and hope that the excitement of the subject may cover other
inadequacies. Recent developments in this area, though largely unsuccessful, have
served, not only to raise important and exciting issues but seem also to have broken
down the “Berlin Wall” and ended the cold war between Particle Physicists and
General Relativists. I havé found this problem a fascinating one and also one which

seems to have a deep relationship with the foundations of Quantum Theoi'y.ir



2. THE BLACK HOLE SOLUTION.

" A year after Einstein gave the final version of General Relativity, K. Schwarzschild
in 1916[1), gave a solution of Einstein’s field equations (now known more generally as
the black hole solution), which has still not been understood fully. The usefulness
and importance of the Schwarzschild solution is unquestioned. One is still left
marvelling at its various features and the surprises it can provide. One of the first
‘surprises was its incompatibility with Mach’s principle, which Einstein thought he
had inwm&ated in his theory. In the second VREA lecture Professor Narlikar
discussed the attempts by him and Professor Hoyle to incorporate Mach'’s pi:iriciple
into the theory of gravitation. Even today the Schwarzschild solution continues to
be & rich source of study as one tries to reconcile General Relativity and Quantum

Theory.

The Schwarzschild solution can be written as ‘the metric v(we; use units with

G=c=1):
ds? = —(1 —2M/r)dt? + (1~ oM /r)"ldr? 4 r*(d6? + sin®6d¢?).

Its use in working out the classical tests like bending of light and precession of the
perihelion of Mercury are well known to many. The singularity at r = 2M of the
above metric attracted attention right from the beginning. It is well known that it
is not a physical singularity as physical quantities of interest are well behaved at
r = 2M , and so it must be a coordinate singularity and change to other suitable co-
ordinates does remove the singularity. However, to a distant or asymptotic observer,
the suffwce r = 2M is still a one way membrane and nothing can escape to the
outside world from inside this surface, usually called the event horizon and more
popularly as the black hole.

Almost 45 years later in 1960, Kruskal [2] gave the coordinate system, which
prov1ded the natural extension of the Schwarzschild metric, and opened the way
to many other worlds that the metric contams (see Fig. 1). Weuse U =

—4Mezp((r* —t)/4M) andV = 4Me:cp\(r +t)/4M) thhfdr = [dr/(1-2M/r),
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which gives r* = r +2MIin(r —2M). In the coordinates T = U +V and R=V - U,
the Kruskal space time is shown in figure 1. In addition to the familiar region
r > 2M, where the orbits for the classical tests were studied and which is now
called Region I, we have three more regions. While one can go from Region I to
Region II, one can not travel in the opposite direction, thus making the r = 2M
surface a one way membrane. Signals emitted by an observer crossing the horizon
are slowed down and a star collapsing to form a black hole seems to take an infinite
amount of time to go through the horizon. This created doubts about the very
formation of a black hole. One can, however, operationally define, for a given small
amount of energy that can be detected, a finite time beyond which no signal is
received. There are other unfamiliar or bizarre aspects. There is a time reversed
region (Region IV) and there is a throat or bridge which connects Regions I and.
IV for a short time [3]). By using suitable coordinate transformations, Penrose was
able to show the infinite regions in a compact way. The Penrose diagram for the

Schwarzchild case is shown in figure 2 [3].

Twenty years ago, in 1974 [4] came the biggest surprise. Hawking showed that black
hole is not really black. It emits thermal radiation, now called Hawking radiation.
This was the culmination of several related developments collectively now called
black hole thermodynamics. These developments pointed to a close connection
between the area of the event horizon and its entropy which in turn gives a certain

temperature to the black hole.

After a few years of intensive study, general relativists seem to have accepted the
correctness of Hawking'’s arguments. There is, however, no hope of an observational
verification in the near future which makes the subject closer to ‘mathematics’ than
to ‘physics’. Hawking’s derivation is based on semi-classical quagtm field theory,
‘whic‘h treats gravity as a classical field while treating the other fields using quantum

mechanics.



3. VAIDYA (metric) and RAYCHAUDHURI (equation) TO THE
RESCUE

It may be appropriate to digress a little bit and describe the way Vaidya metric
(5] and the Raychaudhuri equation [6] were used to settle one of the controversial
points about Hawking radiation in 1980-81. In 1980, Tipler [7] questioned the
‘static’ approximation under which Hawking had derived the presence of radiation.
Tipler argued that, due to back reaction the collapse of the radiating black hole
takes place either in a very short time, (of the order of 1 sec. for a black hole of one
solar mass) or does not take place at all! He concluded that Hawking radiation was
not a realistic phenomenon. For his arguments, he used an equation for the time
dependence of the horizon obtained from the Raychaudhuri equation which can be

reduced, when shear and vorticity are absent, to the form :

d?r/dt? = 2Ldr/dt — 4x < Ty > 1°Ir,

where L = 1/8M, and 12 is the tangent vector to a null geodesic generator of the
horizon. Using the fact that initially the horizon is static, he took d?r/dt? = 0

(incorrectly as it turned out) implying dr/dt = const. so that,

Ldr/dt = 4r < Tap > I*1r.

For a Hawking black hole, T, at the horizon is known to be negative. At the horizon
there is an ingoing flux of negative energy which balances the outgoing Hawking
radiation at large distances. Tipler then argued that very soon d%r/ dtz becomes
positive as r decreases, as L = 1/r and < T,; >~ 1/r4, and the horizon would start
expanding again unless the singularity is reached before that. This gave a lifetime
of the order of a second, and made the static approximation questionable, Tipler

concluded that a black hole does not evaporate.

Hajicek and Israel [8], and Bardeen [9] obtained the equation for r as a function of

time directly from Vaidya’s radiating metric [5] ,

4



" =(1—-2m(r)/r)dt? + 2dvdr + r¥dr

and showed that d?r/dt? never becomes zero but stays negative all the time. This
showed that taking d?r/dt? = 0 in Raychaudhuri’s equation was not justified. Thus
the wrong use of Raychaudhuri’s equation was discovered by the cofrect use of
Vaidya’s equation ! It is not only at the IAGRG meetings that these two doyens
cooperate to help in the amicable settlement of disputes ! There is also an unusual
derivation of Hawking radiation using the quasi normal modes of the Vaidya metric
by York [10]. But I shall not discuss it here.

4. INFORMATION LOSS PROBLEM

Hawking was among the first to realise that black hole evaporation poses a serious
problem in preserving unitarity in time evolution of a quantum mechanical state. It
had been known earlier that information that went into a black hole was lost, but
the presence of an event horizon made this unobjectionable. Black hole evapémtion
* (without any remnant singularity) would remove the event horizon, but does it also
give back the information that went into the black hole? ‘A purely thermal Hawking

radiation can not carry and give back any information and so in the process of black ’
hole evaporation we expect to lose information. In quantum mechanical language,

a pure state goes into a mixed state and there is violation of unitarity (Fig. 3).

One might think that in a macroscopic phenomena like black hole evaporation, it is
difficult to keep track of all the degrees of freedom involved. But we know that in
the absence of effects of gravitation this can be done, in principle; like when a large
block of icé melts or a bomb explodes. According to the standard rules of quantum
field theory in a fixed Minkowski space time, the time evolution of any system
from a given initial state is described unambiguously by a unitary transformation
acting on the state. This implies that there is no loss of fundamental, fine grained
information. Hawking argued that this is no longer true in the presence of a black
hole. The main problem is to know what happens to the black hole when all its
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mass is radiated away; and what happens to all the information that has gone into
the black hole through the one way membrane but has not been able to come out.

Normally, one equates unitarity with conservation of probability. Hawking [11}
proposed a change in the basic structure of time evolution in quantum mechanics
conserving probability but allowing for unitarity violation. He proposed replacing
the usual time evolution operator, U = exp(-iHt) by another operator ‘$ * acting
dinearly on matrices, and taking p the density matrix to § p. Here ‘$’ is called
. the superscattering operator. It can conserve probability but generically: violates

unitarity.

However, Banks, Peskin and Susskind [12] showed that violation of unitarity
necessarily implies violation of conservation of energy. Information transfer seems
to require some energy transfer along with it. So Hawking’s way of dealing with

the probleni by introducing a superscattering operator does not seem to be correct.’

In general one has the following possibilities, when one wonders about the
information that went into the black hole: information is (1) Lost, (2) Reemitted
and/or (3) Retained in some remnant of the black hole. In the first case, loss could
“also mean going to another universe through a wormbhole. In the case of reemission,
it could take place either before or after thé matter crosses the horizon. The former
called ‘Bleaching’ is generally considered not possible in view of the fact that nothing
out of the ordinary is expected to happen to matter freely falling into black hole
at the horizon (as all physical quantities are finite there). To get information after
the matter has crossed the horizon would imply non causal behaviour as the time
inside the horizon is infinite in the distant observer’s frame and information will
have to travel back in time. If a remnant of the hole carries all the information and
radiates it out, it must be a long living one as a lot of information has to be sent
out by an object of small mass (of the order of planck mass). So at first sight, the
second and third alternatives do not seem very feasible. A discuésion of the whole
problem requires a knowledge of the back reaction on the metric due to emission of

Hawking radiation. One has not been able to work this out yet.
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-5. ' TOY MODELS ( 2- DIMENSIONAL )
Recently, there was a lot of excitement when hopes were raised that a toy model
based on stnng theory in two dxmenswns can be solved exactly, even mcludmg
quantum effects. This cla.:m has not been sustuned but in the resultmg actxvnty
one has still learnt a lot. It all began in 1991 w1th the dxscovery of a black hole
in 2-dimensional string model by G.Mandal, A Sengupta. and S. Wadm [13] a.nd
1ndependently by E.Witten [14] The strmg black hole is qmte sumla.t to the

Schwa.rzschxld one. The metnc is
ds? = dr? < tanh?r dt*,

It appears to have a singularity at r = 0, but the scalar curvature R has no

singularity there as R = 4/cosh?r,

So one makes a Kruskal like transformation to 2u = e:iﬁ(r’ —t), and 20 = ezp(r' ‘+‘t),
where r' is the tortoise like coordinate, r' = r + In(l — ezp{—2r)) and dr' =

coth rdr,(r' = —oo when r = 0), to get
ds? = —dudv/(1 —uv).

‘While the horizon is at w=0(r=0,r = ;oo), uv =1 is a real singularity as
cosh?r = 0 there. If we take

¢ = —1/2In(1 - uv) = In(cosh?r) = In(1 + exp(2r')/4),

we have, ds? = —ezp(2¢) dudv. The Kruskal diagram for this case is shown in
figure 4.

Callan, Giddings, Harvey and Strormnger (CGHS)[15] have proposed a model
similar to this and cla.xmed that it was solvable, whxch was what led to some
excxtement In their model ds? = —do*do™ /(1 + Mea:p(a - a+)) = (da"'
dr?)/(1+ Mea:p( 20)) with ot=rto. ertmg ¢ = -1/2 ln(M + ezp(2cr)), we
get

ds? = exp(2¢ + 20)(do? - dr?).
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The presence of field ¢ makes this a metric of dilaton gravity. The action is given
. by .

5 =1/(2n) [ Lo/ Plesn(—20/R+ 4o + 43} - 1/23(f%)

The last term is due to the N matter fields that are present. The summation is over
the N fields f; ... fx . For M = 0,¢ = —c and we have a flat metric and the space
is called linear dilaton. For M > ‘0, the solution is a black hole given by the Penrose
diagram (Fig.5). The horizon is at ot — 0~ = 20 — ;-oo, ( o corresponds to r'
here) and we have a black hole with singularities of the type that a string black hole
had. At the horizon, ezp(2¢)ror = 1/M. For M < 0, it is a naked singularity.

If we have infalling matter f; = F(ot) falling into the linear dilaton vacuum it

forms a black hole as shown in figure 5.

The solutions before and after the infall are given by,

ds? = —dotdo™, ¢ = —o Lin. dilaton and
ds? = —da+dq'/(1 + Mezp(o~ —ot) — Aezp(a7)),
ezp(—2¢) = M + ezp(ot)(—exp(c™) — ), Tyy =1/2(04 F)?
M= /da+T++, A= /dd+exp(—a+)T++.

Using = = —In(ezp(—0~) = A), £t =07,

ds? = —dg*de /(1 + Mezp(6™ — €V)).

Hawking radiation is described by ezxp(—iwé~) as positive frequency. This is
a combination of ezp(—iwo~) and ezp(iwo~). That is a mixture of positive
and negative frequencies of an asymptotic observer which leads to emission with

Hawking temperature in the usual way.



Back Reaction

The back reaction problem seemed solvable under the assumption that dilaton and
metric fluctuations are negligible compared to the fluctuations of the matter fields

fi . Quantisation is considered via the functional integral,

[ DoDbeas(iSyrenls, ¢ | Prespi-iam) [ #ov=onw sir.

By using methods of string theory like Polyokov- Liouville action, trace anomaly

we can show,
<T-—H >= N/48[1 - 1/(1 + Aezp(§™))*] = < TMetter

thus providing consistent energy momentum balance between infalling matter and

the emitted Hawking radiation.

Disaster

Calculation of collapse along these lines [16], unfortunately, &evelops 5, singularity
(kinetic operator degenérates) at éc,., where ezp(24,,) = 12/N . This singularity is
hidden behind an apparent horizon, defined by (Vezp(~4))? = 0. Here exp(—4) is
like a radius. So the 2-dimensional model seems as unsolvable as the 4-dimensional
one. This singularity is present even for the linear dilaton. So this model is also
not solvable and we are not much wiser about the problem of unitarity violation

(Fig. 6).

Giddings [17] still argues that no inférmation comes out in order by order calculation
in 1/N approximation. He uses the fact that Hawking radiation emerges at weak
coupling before ¢ becomes critical. Ezp(24) corrésponds to the gravitational
coupling in this theory. ‘

6. BLACK HOLE COMPLEMENTARITY

Susskind and collaborators have come up with an attractiveidea to analyse the black

hole formation and evaporation based on the 2-dimensional model. This approach is
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based on the idea that one should not attempt to describe in the same framework the
situation as seen by a freely falling observer and an asymptotic stationary observer.
These yiqws are complementary. In this approach, unitary evolutionv is demanded
by assumption and forfnulp,tgd asa ppstulate. When this iélea is pushed to its logical
limit, we find that it leads to prediction of some form of ‘Bleaching’ or information
reemission. This approach seems easier to formulate in terms of the ‘Membrane’
idea pioneered by Kip Thorne antl co-workers in the a;strophysical context. The
event horizon is very important for the distant or asymptotic observer. Nothing
can come outside of it. It is normally claimed that there can not be any drastic
change at the horizon as all the known physical quantities of interest, like curvature,
are finite there. T.hou‘gh this may be true for the ihfalling observer ’(loca,llﬁy); for
the asymptotic observer the event horizon, or more exactly, ‘the membrane: which
is very close to the event horizon may play an imporfa,nt physical role. The idea is

expressed in the form of three postulates [18].

Postulate one : The formation and evaporation of black holes as viewed by the
distant observer, can be described within the context of standard quantum theory.
There exists a unitary S- matrix which describes the evolution from ihfa.lling matter

to outgoing Hawking like radiation.

Postulate Two : Outside the stretched horizon of a black hole, physics can be

described to & good approximation by a set of semi-classical field equations.

Postulate Three : To a distant observer the black hole appears to be a quantum
system with discrete energy levels. The dimension of the subspace of states

describing a black hole of mass M is the exponential of the entropy S(M).

Specifically it is assumed that the origin of thermodynamic behaviour of black hole
is the coarse graining of a large, complex, ergodic but conventionally quantum
éystem. It is also accepted that a freely falling observer experiences nothing out of
the ordinary when crossing the horizon as required by equivalence principle.. This

might seem contradictory.to postulate oue in the following way:
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If space time is foliated with a family of Cauchy surfaces ¥ as shown in figure 7 which
shows the‘P,em'ose" diagram for t{he_evaporating bla.ck hple( The S-matrix rélates
the surface below and above ghé .poin't P (where global event horizon intersecfs
the curvature singula.xit_y). The Hilbert space of states can be written as §, tensor
product space of black hole a.n,.d outside Hilbert spaces. If there is a unitary operator
which relates the outside state before the formation of black hole to the éutside state
after the evaporation of black hole this would imply ’t;hat there is no net information
transfer to the bla.ck hole. So any information received must have been sent back

from the horizon or some membrane outside it.

Thus, all distinctions between initial states of infalling matter must be obliterated
before the sta.te.crosses the global horizon. But this is an unreasonable violation
of the equivalence principlé that tiotlﬁng out of ordiné.ry‘ha.ppens at the event
horizon. This conclusion is not correct, according to these authors, as a state
describing interior and exterior together is unphysical, as this implies correlations
which have no bperational meaning as no information can come out from inside.
Ouly & sﬁperobserver outside our universe ( GOD!) can make use of-the product
Hilbe;t.space. So it is claimed that the a.ésumptions (i) that dJ;stant observer
sees all infalling information returned in Hawking like radiation and (ii) infalling
observer sees nothing unusual at event horizon are not ccntradictory. If one demands
a standa.rd}quantum{t‘heory valid for both observers, it is inconsistent with the
postulates. One can call this a sophisticated ‘Bleaching’ scenario, which many of

us may find attractive. -

In discussing this idea in the context of 2-dimensional models, Susskind, et. al.
avoid the problem of singularity at ¢.. by imj)osing suitable boundary conditiohs,
which is somewhat unsatisfactory. Theyk feel that discussion in terms of the
membrane or stretched horizon is more physical and satisfactory though the

treatment is still qualitative.
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7. STRETCHED HORIZON AND TWO KINDS OF ENTROPY

Clé.ssica.lly, 'quésiétationa.ry black holes can be described by outside observers in
terms of a “stretched horizon” [19] which behaves like a physical membrane with
certain mechanical, electrical and thermal properties. The description is coarse
grained in character. It has time irreversiblity and dissipation properties of a system
described by ordinary thermodynamics. The membrane is very real to the outside
pbéervér. If he or she is suspended just above the stretched horizon, an intense flux
of energetic radiation will be observed, apparently emanating from the membrane.
He or she will also see other electricai, mechaniéal and thermal properties. If,
however, the observer lets go the suspension and falls freely the membrane will
disappear and they can not even report this fact to the outside world. In this sense,
there is a cémplementarity between observations made by infalling observers and

distant observers_.

To implenient the postulates, it is assumed that the coarse grained thermodynamic
description of the ‘membrane has an underlying microphysical basis. The
microphysical degrees of freedom appear in the quantum Hamiltonian used to
describe the observable world. They must be of sufficient complexity to behave

ergodically and lead to a coarse grained description.

Lagrangian mechanics and thermodynamics are quite different descriptions of a
system. In Lagrangian mechanics, the motion of any system is reversible and
the concept of heat and entrgpy has no place. Thermodynamics is the theory
of irreversible dissipation of organised energy into heat. The thermodynamic
description arises from the coarse graining of fhe mechanical description. In
thermodynamiés conﬁgurations that are macroscopically similar are considered

identical.

To discuss black hole formation and evaporation, it is useful to distinguish the
two kinds of entropy that normally arise; Entropy of entanglement and Entropy

of ignorance (or thermal entropy). The former is of quantum origin. Consider a
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quantum system composed of two parts or subsystems A and B. In our discussions
these two subsystems will refer to the stretched horizon and the radiation field
outside the stretched herizon." : ' ‘

Let the total Hilbert spice be a product of the two sub Hilbert spaces. H =
Hy x Hg. If {la >}, {|b >} are orthonormal bases for H, and Hp respectively, a
general ket | ¥ > in H may be written as, [ >= T ¢'(a; b) |a > x[b>.

The density matrix of a subsystem A in the basis {la>}is
pa(a,a') =) t(a,b) ¥*(a’,b) .
b

and that of B is :
pB(b,Y) = ¥(a,b) ¥*(a,b').

Note that the composite system A|JB is in a pure state. The entropies of
entanglement of subsystems A and B are defined by,

Se(A) = =Trlpa Inpa] and Sg(B) = ~Tr{¢p Inps].

Se(A) = Sg(B) if composite system is in a pure state as A and B together are in
our case. Sg = 0 only if the ket |3 > is an uncorrelated product state. The entropy
of entanglement Sg is not subject to the second law of thermodynamics. It can
increase or decrease with time. If Hp is of dimension Dg and H4 of dimension D4
then ‘

SE(B)maz = —In(DB) = SE(A)maz, where Dp < Dy.

Entropy of ignorance or thermal éntropy arises as we have to assign a density matrix
to a system not because it is quantum entangled with a second system But because
we are ignorant about its state. We assign a probability to each state. If we know
nothing, we take p proportional to 1. If we know only its energy, we take p # 0 only
in allowed energyspace. Therthal entropy arises because of the practical inability
to follow the fine grained details of a system. For a system in thermal equilibrium

with a reservoir
PMaz Boltzman = PMB = Z_ICEP(‘BH) and
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- 87 = -Trlpms In(puB)].

8. FORMATION AND EVAPORATION OF BLACK HOLE -

Now let us consider the fonnatxon and eva.poratxon of a two dxmensmna.l black hole.
The evolution of entropy thh txme is shown in the ﬁgure 8. Imtm.lly, the stretched
horizon is in the ground sta,te with nummum area and radmtxon isin a pure state,
so Sg = 0. When area of honzon increases because of mfa.lhng matter, Hawkmg
radiation in the form of f-quanta are etmtted The state of f-qua.nta. are correlated
to the state of the horizon and so S increases. But Sg(Hs) < St(Hs) = A(t). So
Sg is bounded and must return to zero as the horizon goes to the vacuum value.
Page [20] has shown that Sg follows S7 in the beginning. He also showed that the
dependence on the parameter mP, /M is non-analytic so that Giddings conclusion,
mentioned earlier, that in weak coupling approximation no information comes out,

may not be valid.

The final outgoing radiation is different from thermal. To see this, notice that
halfway through the evaporation process (Sg. = St) and fine grain total entropy
is zero. But radiation is correlated to the degrees of freedom of the horizon (Hs).
As more time passes the horizon emits more quanta and the earlier correlation
between horizon and radiation is replaced by correlation between earlier and newly
emitted later quanta. Because of the transfer of these correlations to the radiation
itself the Sg goes to zero and the horizon is no longer correlated to the radiation.
Local properties will be thermal but there are correlations spread over entire time
occupied by the outgoing flux energy. In thie way information is sent vba.ck to ‘the

outside system and no loss of unitarity is there.

9. GENERAL REMARKS

A strange amblguxty seems to preva.ll when one discusses the event horizon of a black
hole. On the one hand, it is a monster gobbhng up things which will never return.
On the other, it is a harmless region, as curvature and other physical variables are

finite there for the freely falling observer. Is the event horizon eventful or a neutral
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spectator ? The contradiction arises due to the need for reconciling two opposite
points of view; that of the freely falling observer and ﬁhe asymptotic observer. The
suggestion that they are complemmtaty and we can not hsten to both seems, thus,
an attractwe idea. When all the dust has settled down, what has beeu chalked up
on the board ? We are no wiser as even the 2-d1mensxonal models have tumed out to
be not solvable in closed form. Some new ideas and lot of newwtechmques have come
up in the process. The black hole complementarity seems ’5 very attractive idea.
However, the theorists working in this area (both particle physicists and general
relativists ) have to get lot more conﬁdcx;cc in their mathematical techniques before
a consensus emerges. Can an obseivq.ble prediction emerge ? One can always hope.
May be in the area of comology where aiso Wehdve an event horizon, a prediction

may emerge !
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Fig. 4 The Kruskal extension of Schwarzschild spacetime.
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Fig. & The Penrose diagram for a collapsing black hole formed

from a left-moving matter distribution.
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Penrose diagram for black hole evolution.
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FIG. 8 Entanglement cntropy of radiation and stretched
horizon. The dashed curves indicate the thermal entropies



