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Gravity as a Physical Interaction

The honour at being asked to deliver the Second Vaidya — Ray-
chaudhuri Lecture naturally brings with it the feeling of responsibility
of saying something wise for the occasion that is befitting the stature
of these two doyens of Indian Relativity. For me it also brings a feel-
ing of inadequacy especially since I have to do the impossible task of
matching the high standard set by Professor Mukunda at the First
V-R Lecture. Nevertheless I will do my best : and I will enjoy the
experience since it gives me the opportunity of doing some loud think-
ing. Both Professors Vaidya and Raychaudhuri are reputed teachers
besides being renowned researchers. As such they have that admirable
but scarce quality of patience which teachers need to listen to imma-
ture or half-baked ideas of their pupils. I hope they will give me a
patient hearing. “

Non fingo hypotheses .

This is what Isaac Newton is reputed to have said when asked to
give his views on why the law of gravitation follows the inverse square
law that he had proposed. By refusing to hypothesise about gravity
Newton was opting for the realist/pragmatic approach, an approach
that seeks and stops at finding the underlying rule that best describes
a variety of natural phenomena. In a letter to Richard Bentley dated
the 17th January, 1692 (93) he wrote ’

“You sometimes speak of gravity as essential and inherent to
matter : pray do not ascribe that notion to me, for ye cause
of gravity is what I do not pretend to know and therefore

would take more time to consider of it.”

Although, it is interesting to note that fourteen years earlier in a
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letter to Robert Boyle [dated February 28, 1678 (79)] Newton had,
somewhat hesitantly, offered an etherbased theory of gravity. It is
important to recognize that Newton’s law of gravitation marks the
next step after Kepler’s laws which in turn were one step ahead of
the Copernican revolution. Copernicus rightly identified the Sun as
the centerpoint of the solar system. However, he still retained the
> epicycles, the ‘circles upon circles’ so popular with the Greeks. Thus
his planetary trajectories were quite combersome and still not exactly
right. Kepler’s main achievement was in breaking away from the
Aristotelian preferences for circles as trajectories for natural motion.
By stating that planets move in elliptical orbits with the Sun as one
of the two foci, Kepler made it easy for Newton to deduce the inverse
square law as the rule governing the dependence of the force of gravity

on the distances between the Sun and the planets.

Today a student who knows ordinary differential equations and
who knows the laws of motion can, with the help of elementary calcu-
lus, determine the force that drives a planet on an elliptical orbit. If
the same exercise is carried out on the epicyclic theory of copernicus,
it becomes extremely complicated and by no means elegant. Nor does

it lead to a simple driving force.

It has been the case so far in physics that simplicity and elegance
appear to govern the basic laws of nature, although there is no clear
understanding of why this should be so. While the laws themselves
are simple and elegant, their consequences need not be. For exam-
ple, a motion of three or more bodies in one another’s gravitational
attraction need not be simple or elegant as Laplace’s Mecanique Ce-
leste subsequently demonstrated. But the criteria of simplicity and

elegance help when searching for the basic underlying principle. And
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this search was simplified for Newton by the hard work of Kepler
spanning more than two decades.

But, why should gravity follow the inverse square law? This
is where Newton stopped his quest — a quest that is still unended.
Even today we do not know the answer in terms of anything ‘more
funda.meptal’. In this lecture I wish to highlight some major steps in
this quest.

Mass and gravity

Let us examine the motion of a planet P under the force of gravity
from the Sun. If M is the Sun’s mass that is exerting the force of
gravity and Mp the mass of the planet that is responding to it then
the force on the planet directed towards the Sun js

Fps =G

1)

where r is the distance between the Sun and the planet and G the

Mo Mp
1-2

gravitational constant. Here we may call My, the active gravitational
mass of the Sun and "M p the passive gravitational mass of the planet.
If we inverted the roles of the Sun and the planet, the force on the
Sun directed towards the planet will be

MpM@

Fsp =G—2 (2)

Notice that the overhead bar has now gone to the Sun’s gravitational
mass which is passive while the planet’s mass is the active one.

Newton’s third law of motion acting across the distance r requires
that Fpg = Fsp and so

M@Mp = MPM@,



ie., % = —AA-;% =k (constant). 3)

The result we have arrived at here tells us that the active and passive

gravitational masses are proportional to each other and the constant

of proportionality k is the same for all planets — in fact it has to be

the same for all bodies. Therefore we may set it equal to unity by

selecting suitable units for measuring these masses. So in terms of

these units we have Mp = Mp, Mg = Mg, etc. and in essence there
is really only one gravitational mass for each body.

Removing the overhead bar, we can now use Newton’s second law

of motion and write the acceleration of the planet towards the Sun as

fp where

GMpMy

= 0

mpfp=

Here mp is the inertial mass of P..
A-priori it is not required that mp = Mp. Indeed, if we consider
the analogy of Coulomb’s law governing the motion of an electron (e)

attached by a proton (p) the corresponding equation is

@Bde
= (5)

,mefe =

Here we do not have m, = g, the electron charge. Likewise we do not
have m, = gp, the proton charge. Indeed because the ratios g./m.
and g,/m, are so different that electrodynamics exhibits effects very
different from gravity. In a given electric field a proton accelerates far
less than an electron.

But in the case of gravity, as Galileo first showed, all bodies fall
with equal rapidity in a given gravitational field. So, the ratiomp/Mp
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is the same for all bodies and again, with a suitable choice of units
the inertial and gravitational masses can be made equal. It was this
result that Einstein employed so cleverly to geometrize gravity.
‘ For, it means that in the presence of gravity in any given region
the world lines of all material particles will be the same. That is,
the world lines are characterized by the ‘geometry of spacetime’, the
geometry associated with the ambient gravity. So, the crucial result
one needs is how these worldlines are determined. The Einstein equa-
tions give the prescription for determining the geometry and the rule
is that in the absence of any other forces, the world lines are given by
the geodgsic principle

5 / ds = 0. ©)

The operative phrase ‘any other forces’ sets gravity apart from
the rest of physics; for the effect of gravity is already taken into con-
sideration, by Einstein’s equations. The equality of inertial and grav-
itational masses is the basis on which this facade rests.
Mach’s principle ,

This intimate connection between inertia and gravity has led to a
_profound influence of theories of inertia on theories of gravity, general
relativity included. The most important notion about inertia in this
context is ascribed to Ernst Mach late in the nineteenth century.

Mach had been critical of Newton’s laws of motion on the grounds
that they are based on the physically unspecifiable concept of abso-
lute space. The law of motion relating inertia m of a particle to its
acceleration f under an impressed force F

mf =F )

5



is valid with respect to an abstract frame of reference which Newton
designated as ‘absolute space’. It is also valid in all other frames in
uniform motion relative to it. 4 ‘

If, however, a reference frame is accelerated with respect to the
absolute space, (7) is not valid. If the frame’s acceleration is a, then
to make (7) valid we have to make the following change :

F—-F—-ma | (8)

where the extra term now added depends on the inertial mass (m)

. of the particle and is termed ‘inertial force’. The so-called centrifu-
gal and Coriolis forces arising in the rotating frames of reference are
examples of this fictitious force that needs to be incorporated if the
second law of motion is to have the usual form in the accelerated
frame. '

If the give force F were uniform, we could find a such that the
net force is zero in (8). This was the trick Einstein used to transform
gravity away in his famous thought experiment of the freely falling
lift. Again, we see that the experiment works because the Earth’s
gravitational force F = mg also contains the same mass term. Thus
a = g is the solution valid for all material particles.

Returning to (8), and to Isaac Newton, the concept of absoluve
space had given Newton considerable food for thought. That the
inertial forces had tangible effects was demonstrated by him through
his experiment of the rotating waterfilled bucket. Newton wrote :

‘The effects which distinguish absolute from relative motion

are, the forces of receding from the azis of circular motion.

For there are no such forces in a circular motion purely rel-

ative, but in a true and absolute circular motion, they are
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greater or less, according to the quantity of the motion. If
a vessel, hung by a long cord, is so often turned about that
the cord is strongly twisted, then filled with water, and held
at rest together with the water; thereupon, by the sudden ac-
tion of another force, it is whirled about the contrary way,
and while the cord is untwisting itself, the vessel continues
for some time in this motion; the surface of the water will
at first be plain, as before the vessel began to move; but after
that, the vessel, by gradually communicating its motion to
the water, will make it begin sensibly to revolve, and recede
by little and little from the middle, and ascend to the sides
of the vessel, forming itself into a concave figure (as I have
ezperienced), and the swifter the motion becomes, the higher
“will the water rise, till at last, performing its revolutions in
the same times with the vessel, it becomes relatively at rest
in it. This ascent of the water shows its endeavour to 1:e-
cede from the azis of its motion; and the true and absolute
circular motion of the water, which is here directly contrary
to the relative, becomes known, and may be measured by this
endeavour. At first, when the relative motion of the water |
in the vessel was greatest, it produced no endeavour to recede
from the azis; the water showed no tendency to the circum-
ference, not any ascent towards the sides of the vessel, but
remained of a plain surface, and therefore its true circular
motion had not yet begun. But afterwards, when the relative
motion of the water had decreased, the ascent thereof toward-
8 the sides of the vessel proved its endeavour to recede from

the azis; and this endeavour showed the real circular mo-



tion of the water continually increasing, till it had acquired
its greatest quantity, when the water rested relatively in the

 vessel. And therefore this endeavour does not depend upon
any translation of the water in respect of the ambient bodies,
nor can true circular motion be defined by such translation.
There is only one real circular motion of any one revolving
body, corresponding to only one power of endeavouring to
recede from its aris of motion, as its proper and adequate
effect; but relative motions, in one and the same body, are
innumerable, according to the various relations it bears to
ezternal bodies, and, like other relations, are altogether des-
titute of any real effect, any otherwise than they may perhaps
partake of that one only true motion.’

We can sum up Newton’s interpretation of his experiment by
saying that absolute rotation has nothing to do with the relative ro-
tations which are directly observed, and that, nevertheless, we can
determine experimentally the amount of absolute rotation possessed
by a body. All we have to do is to measure the curvature of a water
surface rotating with the body.

~ So the absolute space appears to have real existence; but there
does not seem any independent way of identifying it. Earnst Mach
provided that missing link, which I will describe next.

Let us consider an investigation that can be carried out in two
ways to answer the following question : ‘What is the spin of the earth
around its polar axis?’

The astronomer would answer it by noticing that the stars rise
and set and rise again — a phenomenon that repeats itself every 24
hours (or nearly so!). Thus he can identify that period with the earth’s
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spin period. This observation can be improved further by allowing for
a) the annual rotation of the earth round the Sun and b) the rotation
of the Sun round the Galactic Centre.

The laboratory physicist can answer the question by setting up
a Foucault pendulum. The fact that the pendulum’s oscillations are
being measured in a reference frame fixed on the spinning earth gives
rise to inertial forces of which the most effective is the Coriolis force.
Because of this force the plane of oscillation of the pendulum turns
round the local vertical with a period.

T = Tp cosec I, 9)

where 1 is the local latitude and Tp the spin period.

Both the laboratory and the astronomical methods give the same
value for the answer. This fact is often dismissed by the comment ‘so
what?’. The comment is not justified when you remember that both
the astronomer and the laboratory physicist are measuring different
quantities. The former is measuring the spin period relative to the
distant cosmic background while the latter is measuring it relative to
Newton’s absolute space.

Ernst Mach highlighted this issue and stressed that the fact
that two methods agree gives us an important information : namely,
that the distant cosmic background coincides with Newton'’s absolute
Space. V

Here, argued Mach, is the missing link that allows us to concre-
tise the abstract notion of absolute space. It tells us that the absolute
space (more correctly the localinertial frame) is determined by the cos-
mic background. Mach went even further and suggested that because
the very notion of inertia and its quantitative measure, the mass, de-

9



pend on this special reference frame, there is a link between the very
" large scale structure of the universe and the property of inertia. He
wrote in 1872 :

‘For me only relative motions ezist. ... When a body rotates
relatively to \the fized stars, centrifugal forces are produced;

 when it rotates relatively to some different body and not rel-
ative to the fized stars, no centrifugal forces are produced. I
have no objection to just calling the first rotation so long as it
be remembered that nothing is meant ezcept relative rotation
with respect to the fized stars.’

He further said :

‘Obviously it does not matter if we think of the earth as turn-
ing round on its azis, or at rest while the fized stars revolve
round it. Geometrically these are exactly the same case of
a relative rotation of the earth and the fized stars with re-
spect to one another. But if we think of the earth at rest
and the fized stars revolving round it, there is no flattening
of the earth, no Foucault’s experiment, and so on-at least
according to our usual conception of the law of inertia. Now
one can solve the diﬁ‘iculty in two ways. Fither all motion is
absolute, or our law of inertia is wrongly expressed. I prefei'
the second way. The law of inertia must be so conceived that
ezactly the same thing results from‘the second supposition as
from the first. By this it will be evident that in its expression,

regard must be paid to the masses of the universe.’

Mach’s principle quantified

FEinstein, a onetime pupil of Mach, was impressed by this chain
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of reasoning and hoped that his theory of gravity would turn out to
incorpora,tt; Mach’s principle. This hope was not realized in the end.
There are several anti-Machian solutions in general relativity.

For example, there are empty space solutions that are nontriv-
ially different from the flat spacetime of special relativity. In these
solutions R;x = 0 but Rixim # 0. What do the timelike geodesics in -
such spacetime mean? With no ‘background’ of matter why are these
trajectories of ‘particles under no force’ singled out?

On a second count there are cosmological solutions of Einstein’s
equations wherein the distant background rotates with respect to the
local inertial frame. Ironically, the classic paper of Kurt Godel! which
produced one such model appeared in the 70" birthday festschrift for
Einstein. By then, however, Einstein himself had lost his enthusiasm

for Mach’s principle. In his autobiographical notes he writes? :

‘Mach conjectures that in a truly rational theory inertia .
would have to depend upon the interaction of the masses,
precisely as was true for Newton’s other forces, a conception
which for a long time I considered as in principle the correct
one. It presupposes implicitly, however, that the basic theory
should be of the general type of Newton’s mechanics : masses
and their interaction as the original concepts. The attempt
at such a solution does not fit into a consistent field theory,

as will be immediately recognized.’

There were others, however, who felt that Mach’s principle need-
ed to be incorporated in a theory of gravity. For example, Dennis

Sciama3 in the mid-fifties suggested that the observed ‘coincidence’

pGT? ~ 1 - (10)
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where p = mean density of matter in the universe and 7 ~ character-
istic time scale of expansion of the universe as measured by Hubble’s
constant, is a reflection of Mach’s principle. For instance Sciama

wrote :

‘Our ability to calculate this average density is not surpris-
ing, once we undérstand the significance of the relation be-
tween the gravitational constant G and the amount of matter
in the stars. This significance can be expressed as follows.
We saw when we defined the gmin’tatz'onal constant G that
it i8 a measure of the gravitational force produced by a body
of giveﬁ inertial mass. We can reverse this, and say that
G* is a measure of the inertial mass of a body which pro-
duces a given gravitational force. Now in the present theory,
a body produces the same gravitational force whatever other
bodies there are in the universe. On the other hand, its iner-
tial mass is induced into it by all these other bodies. Hence
G, which measures the ratio of inertial mass to gravitational
mass, is determined by these bodies. Our formula for G, the
density of matter, and Hubble’s constant, is just the mathe-

matical ezpression of this physical relationship.’

In 1961, Carl Brans and Robert Dicke* propbsed another version
of Mach’s principle. If we write M as the mass of the observable
- universe and R its range then (10) is equivalent to

Mo ay

Brans and Dicke interpreted (11) as a crude approximation of
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where m; is a mass at distance R; from the observer, there being
t=1,2,... masses in the universe. Written in this form G-! appears
as a scalar field ¢ whose sources are in masses. In other words, the
very strength of gravity is related to inertia through ¢.

Known as the scalar-tensor theory (because of the scalar ¢ and
the usual second rank tensor R of i'elativity both being incorpo-
rated in it) the Brans-Dicke theory played an important role as an
alternative to relativity, thus prompting dramatic improvements in
the observational tests of the two theories within the solar system.
Though largely discredited now by these very tests, the theory has to
be accorded its due credit for its contributions to our understanding
of gravity.

In 1964, Fred Hoyle and I proposed an action-at-a-distance theory
of inertia which directly incorporated Mach’s principle®. In this theory
the inertial mass of a** particle (¢ = 1,2,...) at world point X was
given by ’

ma(X) =20 32 / G(X, B)ds, (13)
b#a -
where ds,, is the element of proper time on the worldline of particle b

and ), a coupling constant. The action at a distance is through the
two-point scalar propagator G satisfying the relations.

°G(X,B)+ SRO(X, B) = (X, B)/y=3(X), (19
and '
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G(X,B) = G(B, X), (15)

where o and R are evaluated at X.
I will not go into details of this formulation except to highlight
some special features.

. (i) The dynamics of the theory are derived from an action principle

62:;’: / / AMG(A, B)ds adss = 0. (16)

~(ii) The theory is conformally invariant with the préviso that there
exist certain hypersurfaces of zero mass. If one insisted on trans-
forming to a conformal frame in which all masses are constant
and non zero, one would arrive at Einstein’s equations with G > 0

and with spacetime singularities on the zero mass surfaces.

(iii) If the zero mass surface has kinks then it may be possible to
interpret them as describing newly created matter and to use this
idea to explain the anomalous redshifts of ‘quasa.lfs and galaxies.
Some versions of the theory also predicted a slow variation of G

with time. Recent radar and laser ranging experiments on the planets

and the Moon, however, appear to rule out |G/G| > 10~ yr—1.
T mention these examples to illustrate how a philosophjéal idea
that originated with Mach has led to tangible observational develop-

ments in the field of gravitation and cosmology.

Gravity as a part of the unification programme

I turn now to the more fundamental side of gravity and to the
deeper question of how it can be unified with the rest of physics. Al-

though Einstein himself unsuccessfully attempted unification, para-
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doxically his approach to gravity has been detrimental to the unifica-
tion programme. Let me clarify this statement.

By geometrizing gravity Einstein effectively removed it from the
scene as a force. The existence of a force in general relativity is
detected through nongeodetic motion. For example an electron in
the neigbhou.rhoqd of the Sun would move along a timelike geodesic
if there were no magnetic field in the Sun. Because the Sun has a
magnetic field the electron would not move along the geodesic. Thus

geometrisation of these trajectories is not naturally achievable.

If one were to unify gravity with electromagnetism, along Ein-
stein’s line then it is necessary to transform the former also into a
geometric entity. This, however, is not so easy even by enlarging the
spacetime to higher dimensions. For, unlike Galileo’s heavy and light
bodies, the electron and the positron do not have the same trajectories
in a given electro magnetic field despite having the same mass. In gen-
eral the ratio e/m (charge/mass) enters explicitly into the equations

of motion of an electric charge.

If, however, we retain the electromagnetic interaction as a sepa-
rate force we cannot naturally unify it with gravity which is no longer
a force. This has been one reason why the unification programme for
basic physical interactions has proceeded in a manner complementary
to that attempted by Einstein-by uniting the other basic interactions
and keeping gravity out.

In the so called ‘grand unified theories’ (GUTs) the strong inter-
action is sought to be united with the weak and the electromagnetic
interactions. The latter two can be unified as the ‘electroweak theory’
by the Weinberg-Salam approach of gauge theories. The GUTs there-
fore seek the unification that has a larger gauge group of symmetry
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that includes the SU(3) group of strong interactions as well as the
SU(2)r x U(1) group of the electroweak theory.

It is still too early to predict whether this approach will succeed.
The encouraging signs are that gauge theories are renormalizable and
so one may hope for a unified theory that allows perturbation ex-
pansions to be carried out. However, so far as gravity is concerned |
this creates an additional barrier between the GUTs and gravity : for
gravity as developed by Einstein is not a gauge theory in the usual
sense of the word. Indeed, as shown by Richard Feynman in the early
sixties, the first order tensor field théory of spin 2 that one obtains by

linearizing general relativity is not renormalizable.

Quantum gravity

Since unification is ultimately to be achieved at the quantum level

the theoretician is inevitably driven to the job of quantizing gravity.

Note that unlike other interactions where laboratory or cosmic ray

observations forced one to consider quantum theories of those inter-

actions, here we have no experiment that makes it necessary to think
of quantum gravity.

The transition of rules governing a system from classical to quan-
tum physics is determined by the ratio J, /h — the ratio of the action
of the system to Planck’s constant (divided by 27). Let me illustrate
with the help of electrodynamics.

An electron of mass m, charge (—e) moving in the field of a proton
of mass M > m and charge (+e) has the Lagrangian

= -;—ml"2 + _e;. 17
Suppose the electron moves in a circular orbit of radius Ry. Then we
have for this orbit
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ie, L=_———=. , (18)

The characteristic time of the orbit is

/2,,1/2
T 21|r:|?o _ 2n'R3e ml/? (19)

Multiplying (18) with (19) we get the classical action for this
motion as / \

J ~ 3weRY2m1/? (20)

Now, our criterion says that the above calculation based on clas-

sical mechanics is valid provided J/& > 1, i.e., if
Ros> o 10"%m, (21)
me? , )

The right hand side is of the order of the order of atomic di-
mensions, thus telling us that our classical mechanics breaks down
when discussing the electrodynamics of the atomic systems. When-
ever J/h ~ 1, the rules change to those of quantum mechanics.

Let us now examine the corresponding situation for gravity. If
we consider Newtonian gravity, then the result (21) is altered to

B -50 |
Ry » ey Vi ~ 107" m. (22)
where we have replaced e? by GmM.

This limit illustrates how ridiculously small in size the system
has to be in order to show quantum effects of Newtonian gravity.
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Nevertheless we may improve the situation somewhat by going
to relativity. For example, the orbital velocity at 10~50m far exceeds
the speed of light! So to bring in general relativity we consider the
Hilbert action

=1 /R\/ gdiz. (23)
Over a characteristic length scale set by
L~ R/? (24)
the above action becomes
A g ‘
| | J~ EL (25)
so that the classical validity extends to
L> \/% =Lp~10"%m. (26)

where Lp is the ‘Planck length.’

Note that the classical to quantum criterion for electrodyunamics
contained the electron mass explicitly in the length scale. The Planck
length does not depend on any such particle mass. This length is
characteristic of spacetime geometry and as such applies to any pai-
ticle moving in it. The limit in (26) is considerably higher than the
Newtonian limit (22) as was to be expected in view of the light speed
limit operating in relativity.

But what should one make of this result? To the extent that
it tells us not to trust the results of classical general relativity down

to this low limit of Lp it serves a useful purpose. But what laws
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of quantum gravitomechanics should one use instead? This question

brings us in head-on eollision with the wall of quantum gravity.

- For, there are numerous conceptual and operational difficulties
inherent in this wall. I enumerate them briefly. The operational
difficulties may be somehow circumvented but the conceptual ones

are not to easy.

The first conceptual difficulty is in the basic question : “What
are we quantizing?” Recall that in ordinary situations involving other
interactions, like quantum electrodynamics, the motions of particles
and the electfomagnetic interactions themselves are quantized. While
we could still quantize particle trajectories in a given curved space-
time, how do we quantize the gravitational interaction? For there is
no longer a ‘force of gravity’ to quantize : it has been replaced by the
non-Euclidean spacetime geometry.

The second conceptual problem comes when we try to quantize
geometry. In normal quantization of any field the background space-
time is given : in fact it is Minkowskian in the field theories discussed
by particle physicists. Here, however, we are out to quantize the

spacetime itself.

Amongst the operational problems may be mentioned the nonlin-
earity and nonrenormalizability of general relativity. It may be pos-
sible to circumvent the latter by using a nonperturbative field theory
approach. The nonlinearity may be handled by using some new vari-
ables. The approach currently pioneered by Abhay Ashtekar® seems
a promising step in that direction.

Assuming that the holy grail of quantum gravity is eventually
attained, the question still remains : “What practical dividends will -

it pay?” Except for the state of the univese very close to big bang there
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is no phenomenon known today that forces us to think of modifications
at the level of Lp. I therefore end by discussing this particular era in
the history of the big bang universe.

Quantum cosmology

| The big bang cosmological model as given by the classical general
relativity has the spacetime described by the line element

ds® = 2dt? - Sz(t){ 1 :i_r:,rz + r2(d6® + sin20d¢2)} (27)
where S(t) is the expansion factor. The epoch ¢ = 0 is the so called
‘big bang’ epoch. k is the curvature parameter with values 0,1 or —1.
This classical model suffers from three defects peculiar to non-
Euclidean geometry : the spacetime singularity at ¢ = 0, the particle
horizon problem and the flatness problem. Let me briefly discuss
them. \ ,
The spacetime singularity arises from the vanishing of S(t) at
= 0. At that epoch the geometrical parameters either vanish or
blow up, thus leading to a breakdown of the principle of equivalence.
No remedy for this defect is available within the classical relativity
unless one is willing to give up some ‘reasonable energy conditions’.
The function S(t) behaves like t!/2 for small ¢t and this introduces
' particle horizons of size ~ 2ct. For small ¢ the horizons are so small
that the univese is split into a large number of small causally discon-
nected regions, each region being internally casually connected. So
the question arises : why does the universe appear so homogeneous
on a large scale as evidenced by the smoothness of the microwave

background?
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The flatness problem relates to the parameter k. For k = +1
the universe is closed and it collapses eventually to a zero value of
S(t). For k = —1 the universe is open and it expands out to infinity.
Now the time scale for this to happen is not given by the theory
but depends on the initial conditions. If one looks at the very early
epochs, the characteristic time scales are very small, ranging from .
the Planck time scale Lp/c ~ 10435 to the time scale ~ 10~365
characteristic of grand unification of theories. If the initial conditions
of the universe were determined during this era, it becomes a mystery
as to how it is still expanding after a time scale of ~ 3 x 10'7s : why
has it not collapsed or blown apart to infinity? This is possible only if
the universe were very finely tuned to values of density and curvature
that correspond to the ‘flat’ spatial model k = 0. Why this early
preference for a flat or nearly flat model?

To answer these questions we might resort to quantum gravity
as one of the ways. In fact we might demand the resolution of these
problems as the prerequisite of a successful theory of quantum gravity.
So far, however, none of the formal approaches to quantum gravity
has advanced to a state where it can throw light on these problems.

- I'will describe a pragmatic and half baked approach that has the
merit of tackling these problems within its somewhat restricted frame-
work. This is the approach of conformal quantisation. To introduce
it I will first discuss conformal transoformations.

We may consider two manifolds M and M with metrics related

by
Gir = g (28)
where Q is an arbitrary function of spacetime coordinates z¢, i =
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0,1,2,3. We say that M is a conformal transform of M. This trans-
formation preserves the global light cone structure and hence all causal
relationships in spacetime. In any quantum gravity transition from
M to M these relationships are preserved.

We may state this more stroﬁgly : the most general transfor-
mation of geometry that preserves the global causality has to be a
conformal transformation.

Do nonconformal transformations have a locus-standi at all in
quantum gravity? If they do, then they will play havoc with physical
causality. The spacetime points causally connected in M may no
longer be so in M and vice versa. How to handle such scenario is the
problem all formal approaches to quantum gravity have to face. We
will skirt round it and stick to conformal transformations only — more
in the spirit of looking for the lost needle only in lighted corners.

The simplicity of this restriction is that the problem of quantum
gravity becomes explicitly solved. Consider the problem as follows.

Foliate the spacetime M with spacelike hypersurfaces }_, given
by z° = constant. On each Y we have the 3-geometry given by G(3),
say. The classical geometrodynamics of Einstein’s relativity tells us
how to compute G(23) on ¥, given G§3) on an earlier ¥;. As discussed
by Isenberg and Wheeler’, the conformal part of G(la) and the extrinsic
curvature of ¥; are needed to specify the initial value problem.

In quantum cosmology we formulate a different problem. We
attempt to construct a propagator that determines the probability
amplitude that given G(13) on ¥; we will find Gga) on ¥,. This ampli-
~ tude is given by the Feynman path integral

K(®2,68%21,6) = [ exp GI/myor (29)
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where J is the classical action for gravity and I" a typical path in the
space of 3-geometries that begins at G§3) on ¥; and ends at G’ga) on
22.

So far we have been quite general. Had it been possible to eval-
uate the above path integral or even to manipulate with it in simple
cases, the problem of quantizing gravity would have been solved. Un-
fortunately reality is otherwise. One needs to simplify the matter
further by restricting to fewer degrees of freedom than the co® con-

tained in the space of all 3-geometries.

A drastic simplification is to confine attention to only the confor-
mal degrees of freedom, i.e., to metrics of the form Q2g;, where g;i is
the metric of a classical solution of Einstein’s equations. So we talk
of a propagator K which takes a geometry with conformal function

2; on X; to another with Q; on X,.

This problem is therefore one of quantum conformal fluctuations.
It is solvable exactly because the path intégral is one of quadratic
exponential in 2. T will not go into details of the computations except
to say that K(Z2,Q;X1,Q;) can be explicitly evaluated.®

Returning to the classical Friedman solution, we consider any
conformal transform of it by using an  that is an arbitrary func-
tion of ¢ only. This preserves the cosmological principle although the
new spacetime is no longer a solution of Einstein’s equations. Each
Q # constant therefore defines a non-classical path I in the space of
geometries, with I'; being the classical path = constant. We may
define the final state of the universe at t = #, by = Q, and assume
that for ¢ >> ‘t5 the universe is almost classical, i.e., J > h We do
not know what state the universe was in at t = ; < to when J < h.
S(; we write the evolution of the universe between t; and t2 by the
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quantum relation

P1(t, ) = /K(tz,ﬂz;t1,91)¢2(t2,Qz)dﬂz (30)

where 11, ¥ are the wave functions of the universe at t; and 3. The
function 1, has a compact support around a constant value 2z = o,
say. For example, it may be a wavepacket centred on (2o with a small
dispersion o3. ‘

The interesting result that emerges is that although ¥ is also
centred around €; = o, its dispersion oy is much largel:. In fact,
o, — 0o as t; — 0. In other words, the quantum uncertainty about
the state of the universe in the past grows indefinitely as the past
epoch approaches the classical singular epoch. Moreover, whether the
universe was singular or not at ¢ = 0 can be answered in terms of
quantum probabilities : it turns out that the set of singular solutions
has the probability measure zero.

This work can be generalized to the conformal function Q de-
pending on space as well as time and the classical solution being any
singular solution of Einstein’s equations. The result of singular non-
classical solutions having a set of measure zero in probability contin-
" ues to hold. With the singularity (almost) gone the particle horizon
is also unlikely to survive and thus both the singularity and horizon
problems are cured.® ' '

So far as the flatness problem ié concerned the result is stat-
ed thus.- If we assume that the universe was initially in the empty
Minkowski form then it is unstable to conformal fluctuations. We
can determine the probability of its transition to any conformally flat
form : however, the relative probability is overwhelmingly large for

Q a function of time only. This is none other than the case of a
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Robertson-Walker spacetime with k = 0. Thus it is very likely that .
the universe made a transition to the £ = 0 model provided it was
initially empty with Minkowski spacetime.? |

The interesting result to explore is whether as the ‘next best’
alternative to the smooth £ = 0 R-W model we ha_vé small space
dependent perturbations on 2 and if so whether these perfurbations

act as seeds for galaxies.

Concluding Remarks

This approach illustrates that much can be achieved in ‘quan-
tum cosmology if one approaches it from the hiuristic rather than the
formal end. We may recall that quantum theory itself grew in the
hiuristic fashion and even today it has several epistemological issues
to clear up. If one had insisted on first creating a formally satisfactory
framework of quantum theory before trusting its results for specific
problems, we would not even have solved today the problem of the
hydrogen atom! ' ‘

To end this talk I return to Newton’s “hypotheses non fingo”. I
believe it is still the right attitude to take towards gravity which con-
tinues to be the most mysterious of all physical interactions. While
developing formal structures has its own attractions, the proof of the
pudding lies in the eating. Today we are concentrating more on mak-
ing formal recepies for quantum gravity-recipes that look attractive
to read in a cook book but which no cook can ever translate into a
tangible pudding. Is it not high time to take a pan and begin cooking,

howsoever primitive the recipe may look?
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