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The trinity

He (PCV) urged the use of both parts of the brain - left and
right; left for analytical and mathematical, and right side for
physical significance.— ICGC 1987.
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Background...

C.F. Cho and NDH(Ann.Phy. 96, p406,1976) were the first
to give the correct classical derivation of the Gravitational
Spin Precession in this system.
The first GR derivation was given by Börner, J. Ehlers and
E. Rudolph(Astron. Astrophys 44 p.417(1975).
The expression that is widely quoted in literature now
came out of the calculation of the gravitational interaction
between two Dirac fermions by Barker and O’Connell(ApJ
199, L25, 1975).
V. Radhakrishnan and NDH(Astrophysical Letters Vol 16,
p.135, 1976) were the first to give a detailed method to
observe this effect based on pulse profiles.
Their analysis predicted in detail the effects of spin
precession in pulsars both on pulse profile as well as the
polarisation sweep.
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New controversy

Ehlers, Rosenblum, Goldberg and Havas in 1976
(Ap.J.Letts 208(1976) L77) criticised the Einstein derivation
on a number of counts.
Einstein had been rather clumsy in his derivations.
For all those reasons, Ehlers et al advocated a critical
re-look at this very important issue.
Among the items they recommended for a careful
treatment was the issue of the so-called logarthmic
deviation of light-cones even in the so called radiation
zone(more on this later)
In 1978 Rosenblum claimed that one needs 3rd order
post-newtonian approximation, and further claimed the
correct answer to be 2.5 times the Einstein result.
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Our approach I

I first describe work done with V. Soni (Feynman graph
derivation of the Einstein quadrupole formula, J.Phys. A,
Math and Gen.,15(1982) 473-492) that was based on a
Feynman graph approach in spin-2(rather, helicity-2)
theories of gravitation.
Normally one would not resort to quantum methods to
resolve admittedly classical issues, though there is nothing
wrong in principle in doing so.
One might even argue that philosophically that is the
correct way as the world is quantum mechanical!
In the present case, the main motivation came from the
fact that even careful classical calculations had come
under a shadow.
Some obvious advantages of the Feynman graph
approaches are that particle equations of motion are
automatically taken into account through conservation laws
at the vertices.
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Feynman graph..

General coordinate invariance translates to the better
understood and computationally easier gauge invariance.
Many valid objections can also be raised at this point.

The most serious could be that no fully satisfactory
quantum gravity theory has yet been found(this remains
true even 40 years after my work!).
My response to that is that we are ultimately interested in
the classical limit and this is captured by the tree graphs for
which there are consistent and satisfactory treatments.
In fact, regularised perturbative quantum gravity is fully
under control.
In the limit one is interested in, renormalisation problems
do not arise.
No need to struggle with subtleties and nuances of the
pseudo tensor
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Feynman...

Another serious issue is the presence of the potentially
large parameter Gm1m2.
As it turns out, this is tied up with the other serious lacuna
of massless field theories i.e the lack of a strict S-matrix.
In plainer terms this has to do with the fact that even at
very large distances, plane waves are not a solution.
This is quite familiar and well understood, for example, in
the solutions of the Schrödinger equation for Coulomb
potentials.
Coulomb distorted wave functions
It turns out that the precise analog of this in GR is the
logarthmic distortion of distant light cones.
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Gravitational Scattering Case

The diagrams contributing to gravitational radiation during
gravitational scattering are shown below.
It is to be noted that all these are of order κ3.
The criticism of Einstein’s original derivation becomes
self-evident here.
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Electromagnetic Scattering Case

The diagrams contributing to gravitational radiation during
electromagnetic scattering are shown below.
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Non-relativistic reductions

We leave out the details and present results for the
amplitudes in the non-relativistic limit:
The result for gravitational scattering case is:

Mg
ij = 4 i κ3 m1m2

q2

{ M
8ω

(pipj − p′ip′j) + µM
qiqj

q2 }

The result for electromagnetic scattering case is:

Mem
ij = −8 i κ

m1 + m2

q2 e1e2
{ M

8ω
(pipj − p′ip′j) + µM

qiqj

q2 }

It is to be noted that these are simply proportional to each
other!
This hints to a universal form for gravitational radiation.
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Coulomb distorted Born approximation

The final result when long range modifications to plane
waves is taken into account: The two particle state
becomes

χ(~r1,~r2, t) = ei(E1+E2)t ei~P·~R− i
2
~p·~r F (iν,

ipr
2
− i

2
~p ·~r)

Mij =

∫∫
dq dq′ ψ∗−(−iν ′,p′,q′) {. . .}ψ+(iν,p,q)

Here ν = Gm1m2µ
p for the gravitational case, and

ψ(iν,p,q) =
8πν p

(p2 − q2)1+iν
1

|p− q|2−2iν
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Logarthmic distortion of light cones

The graviton wave function in the radiation zone
approaches the form:

hµν → εµν eiω t−i~k ·~r+2iGMω ln r

Clearly the light cones are logarthmically distorted w.r.t flat
light cones!
This was one of the issues that Ehlers et al had
emphasised.
Suggests the new time coordinate

t∗ = t +
2GM

c3 ln r

This is the same as what Anderson had used to analyse
this issue!
Most remarkably, the long range modifications to the
graviton wavefunction do not affect the matrix elements.

N.D. Hari Dass



One Graviton Transition Operators

The final results can be cast in the form

Mij →
−4m1m2

ω
{κ

2
...
D ijε

ij}fi

This allows one to identify

{κ
2

...
D ij ε

ij}

as the one graviton transition operator
For the electromagnetic radiation this, in the leading order,
turns out to be

Mij = −4m1m2

ω
{~ε · d̈}fi

On comparing the Larmor power formula there, one
immediately arrives at the Einstein quadrupole formula!!
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Approach II: Low Energy Theorem Approach

Low energy theorems for quadrupole radiation in
electromagnetism and gravitation, N.D. Hari
Dass,NBI-HE-81-45 (1980) (Unpublished).
Low energy theorems are powerful techniques pioneered
by particle physicists when they were desperately groping
for a theory of strong interactions.
Pioneered by Nambu, Schwinger, Weinberg, Mandelstam,
Francis Low and others, these theorems allowed one to
understand many aspects of hadrons even in the absence
of a fundamental or even effective theory for them.
The earliest example was Low’s theorem for Compton
Scattering which showed that at very low frequencies the
scattering was entirely determined by the total electric
charge, and nothing else(in the sense that structural
details were irrelevant).
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Low Energy Theorems...

Next such, due to Low again, showed that power radiated
through electromagnetic radiation was entirely governed by
the time rate of change(actually second derivative) of the
electric dipole moment and nothing else.
In fact, in my application of these techniques to
gravitational radiation, I closely followed Low.
As a spin-off, I found that Low’s treatment gives more even
for electromagnetic radiation!(Though Low also had
claimed this he had omitted some crucial terms needed for
this).
The next correction is also universal, given by third time
derivative of quadrupole moment.
A vast majority of processes involving mesons and
photons could be described in terms of a few parameters
long before QCD came on the scene!
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Electromagnetic and Gravitational LET’s: Weinberg

Weinberg in the 1960’s pioneered the study of gravitational
LET’s. A remarkable result proved by him was:for arbitrary
processes

A1 + A2 + A3 + . . .→ B1 + B2 + B3 + . . .

gauge invariance of amplitude to emit a soft photon
requires ∑

qi =
∑

qf

However, the analogous gravitational LET yields∑
κi Pµ

i =
∑

κj P ′µj
Conservation of energy-momentum∑

Pµ
i =

∑
P ′µj

immediately implies
κi = κ

This is the Principle of Equivalence!
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Gravitational LET’s..

Then came the Hulse-Taylor pulsar in late 1974. The test
particle assumptions broke down.
Barker and O’Connell had proposed a formula for
spin-precession based on a calculation of the gravitational
interaction between two Dirac particles.
With C.F. Cho I calculated this purely classically using
Schwinger Source Theory. The answer agreed with
Barker-O’Connell result!
I again smelled Low Energy Theorems!
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Gravitational LET’s..

We (C.F. Cho and NDH, Phys.Rev. D14, p.2511, 1976)
proved a LET for the stress tensor of the form:

〈p′|Tµν |p〉 = κ{(p + p′)µ(p + p′)ν + qµΣµνpν + µ� ν}

This is a completion of Weinberg’s results to include
spin(this had also been derived independently by Deser
and Boulware shortly before).
Because of the inherent ambiguities of the stress-tensor,
this is all that one can achieve.
This single LET correctly accounted for all the classical
predictions of GR (excluding perihelion advance and
gravitational radiation)!
It also correctly reproduces many one graviton exchange
quantum processes.
In electromagnetism the corresponding LET is:

〈p′|Jµ|p〉 = 2epµ + O(q) + . . .
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How to derive LET’s for radiation?

One starts with T-matrices for vertices and for scattering.
T-matrix becomes the S-matrix when all external legs go
on shell
S-matrices are observable
When the emitted radiation is very soft, except for the leg
connecting the scattering T-matrix to the vertex T-matrix, all
others are on-shell.
The exceptional leg is only mildly off-shell because of the
softness of the radiation. Hence the T-matrices can be
Taylor expanded.
The sum of all diagrams where radiation is from the
external legs is not gauge invariant ingeneral.
One adds the internal bremsstrahlung diagram to restore
gauge invariance.
The sum of all terms now give the LET amplitudes.
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LET vertices

Figure: The vertex T-matrix

N.D. Hari Dass



LET scattering T-matrix

Figure: Scattering T-matrix

T (p2
1,p

2
2,p
′
1

2
,p′2

2
, ν,∆)

ν = p1 · p2 + p′1 · p′2 ∆ = µ{
(p′1 − p1)2

m1
+

(p′2 − p2)2

m2
}

q = p′1 − p1 = p2 − p′2

N.D. Hari Dass



LET for radiation

Figure: Radiation LET’s
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Some details..

Consider the first of the diagrams. Its contribution is

Mµ =
2e1 p′1µ
2 p′1 · k

T (m2
1,m

2
1 + 2 p′1·k ,m2

2,m
2
2, ν + p′2·k ,∆ +

2µ
m1

k ·q)

Mµ =
e1 p′1µ
p′1 · k

{T0 + 2 p′1·k T2 + 2p′2·k T5 +
2µ
m1

k ·q T6 + . . .}

k ·M = e1{T0 . . .}

Adding all such contributions one finds T0 terms cancel
completely(Weinberg’s electro LET).
For the first diagram find M̃µ such that

k ·M + M̃ = 0

Mµ = e1 {
p′1µ

p′1 · k
T0 + p′1µ

p′2 · k
p·1k

T5 +
2µ
m1

k · q
p′1µ

p′1 · k
}
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Final amplitude: electromagnetic case

Mµ = e1
( p′1

µ

p′1 · k
−

pµ1
p1 · k

)
T0

+
(
p′1
µ p′2 · k

p′1 · k
− p′2

µ
+ p′1

µp2 · k
p1 · k

− pµ2
)

T5

+
2µ k · q

m1

( p′1
µ

p′1 · k
−

pµ1
p1 · k

)
T6

+ 1 � 2
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Final amplitude: gravitational case

Mµν =
(p′1

µ p′1
ν

p′1 · k
−

pµ1 pν1
p1 · k

)
T0

+
(
p′1
µp′1

ν p′2 · k
p′1 · k

+ pµ1 pν1
p2 · k
p1 · k

+ p′2
µp′2

ν p′1 · k
p′2 · k

+ pµ2 pν2
p1 · k
p2 · k

)
T5

−
(
p′1
µ p′2

ν
+ p′1

µ p′2
ν

+ pµ1 pν2 + pν1 pµ2
)

T5

+ 2µ k · q
{ 1

m1

(p′1
µ p′1

ν

p′1 · k
−

pµ1 pν1
p1 · k

)
− 1

m2

(p′2
µ p′2

ν

p′2 · k
−

pµ2 pν2
p2 · k

)}
T6
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Non-relativistic reductions..

For the electromagnetic case(gauge choice ε0 = 0):

~ε·~M =
~ε · ~q
ω

( e2

m2
− e1

m1

)
T0 +

( e1

m2
1

+
e2

m2
2

) εi nj

4ω
(
pj pi −p′j p′i

)
T0

−2µ εi nj
( e1

m2
1

+
e2

m2
2

)
qi qj T6

Rewriting the second group as

εi nj

4ω
( e1

m2
1

+
e2

m2
2

)
X ij

where

X ij =
{(

pj pi − p′j p′i
)

T0 + 8ω µqi qj T6
}
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Non-relativistic reductions: gravitational case

It is straight forward to carry out the reductions hee too.
Adopting the gauge

ε00 = 0 ε0i = 0 εii = 0

the final answer is
− κ

µω
εij X ij
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What next?

The first step is to simplify various terms...

pi pj − p′ip′j ' −4(pi qj + pj qi + qi qj)

Next use
pi = 2µ v i

Finally in the Born approximation

T (q) =

∫
V (r)

4π
e−i~q·~r

Assume spherically symmetric potentials.
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Some useful identities

qi T0 (q) = −i
∫

(
∇i V
4π

)

qi qj

|~q|2
T ′0 = −

∫
e−~q·~r

8π
(
V (r) δij +

ri rj

r
V ′(r)

)
ω ≡ i

d
dt
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Punchlines..

For electromagnetism:

− i
4π ω

〈~ε · ˙̇~d〉 − i
8πω

εi nj 〈
˙̇Q̇ij

3
〉

For gravitation, the same quadrupole term!

N.D. Hari Dass



Octupole: status

Since in electromagnetic case, one gets dipole in leading,
electric quadrupole in the next, and v

c corrections to
electric quadrupole(non-universal T5), it is reasonable to
expect octupole radiation also in the case of gravitation.
Some preliminary results are at hand.
The LET gives the correct mass dependence

∆ m µ

M

Several of the terms in the fourth time derivative of Oijk are
reproduced, but not all.
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Octupole..

The problem could be because in higher orders one has to
be extremely careful in keeping small quantities
consistently.
I plan to carefully reanalyse all the terms that have been
neglected to see if that improves the situation.
I plan to use the feynman graph calculation to guide me in
this.
If I succeed in getting the octupole terms correctly, I would
conjecture that all multipoles should be reproduced by the
LET’s.
Such an exercise will be important in carrying the LET
analysis to higher multipoles.
One can also use explicit T-matrices to learn more.
These approaches have the important potential for
independent verifications of GR calculations.
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Results

For gravitational radiation I was able to obtain the
quadrupole formula.
My method has the potential to yield the (v

c )2 corrections.
Additionally, two remarkable results on parity violations
could be proved. These are stated without their full proof in
(NDH, Experimental tests for some quantum effects in
gravitation, Annals of Phy, Vol 107, p.337, 1977).
I. The first two terms in parity violation in gravitation
induced by the Standard Model vanish!
II. The leading order fundamental parity violations in
gravitation are absent in any theory with a symmetric gµν .
The stress tensor LET that I had proved with Cho had
been proved independently by Deser and Boulware shortly
before us using very different techniques.
These results are complimentary to Duff’s demonstration
that summing tree diagrams of spin-2 theories yields GR in
the low energy limit.
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Ongoing work...

In the case of electromagnetism, the T5 terms were
non-universal, but in the case of gravitation the energy
dependence of T-matrices could be universal and hence
the T5 terms too.
A puzzle in the case of electromagnetic radiation was the
apparent absence of magnetic dipole radiation.
I have resolved this as due to the omission of
magnetisation terms in the current.
In the gravitational case also I should be getting the
gravi-magnetic quadrupole part also by including the
extensions to Weinberg’s LET..
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Ongoing..

An important question is about general space-times.
Quantum calculations could only be formulated in terms of
S-matrices involving asymptotic states.
Coulomb distorted waves was an improvement, and that
could also be thought in terms of non-perturbative infrared
aspects.
For general space-times, all this points to the importance
of asymptotic symmetries.
Recently there has been a lot of interest in the so called
super-translations and their connections to soft-graviton
theorems(Strominger, Cachazo, Ladha, Sen...).
I would like to explore the import of my results for those
issues.
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