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Introduction

I deem it a great honour and a privilege to be invited to give this talk in honour
of Professors Prahlad Ch1;nila1 Vaidg'ra’ and Amal Kumar Raychaudhuri. They are
two of the senior and most respected relativiéts, nay theoretical physicists, in our
country today; and this is the first in a series of talks instituted in their names. In
a way, through their lifelong devotio.n'to their work, and especially in their choice
to fashion their careers and carry out théil_' mseafches based totalli in India, they
remind us of Satyendranath Bose and Meghnad Saha, theorfst_s and pioneers of an
earlier generation. It is with fespef:tful admiration that I present this talk to them.

I would like $o address myself to students and young research workers getting
interested in problems in relativity and gravitation, and to present ﬁth a lighf
touch some points of view illuminating different aspects of fhe general theory of‘
relativity. This theory is legitimately regarded as the summit of classical, i.e. pre-
quantum, physics; and is often described as a supreme combination of physical
insight, mathematical beauty and hé.rmonj,' “one of the greatest examples of the
- power of speculative thought”. Indeed in the words of Landau and Lifshitz, “It is
probably the most beautiful of all existing theories”. It is instructive and important
to realise, however, that the triumphanf completion of the general theory of relativ-
ity by Albert Einstein in November 1915 was preceded by glong period of gestation,
several years of hard labour, with quite a few false steps and misconceptions on the -
way. Especially in view of some remarks to be made later on, let us rapidly remind

ourselves of some parts of this heroic one-man struggle.

The Meaning of General Covariance

As we a.ll know, the essential structure of special relativity had been worked
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out by Einstein, sitting in his chair in the patent office in Berne, in 1905. It.
was in November 1907, sitting in that same chair preparing a review of special
relativity, that there occurred the first of many deep insights into the problem of
 gravitation!. Later characterised by him as “the happiest thought of my life”, it
was the first understanding of the Principle of Equivalence, that a gravitational
field could be eliminated or transformed away by passing to a suitably accelerated
noninertial frame of reference. In attempting to reconcile Newtonian gravity and
special relativity, Einstein saw very soon that in fact special relativity had to be
extended to include gravity. With great courage, after this realisation he gave up
Lorentz invariance as a global requirement, and in a manner of speaking began
the search for a “larger symmetry group” to/encompass‘ gravitation. During the
period April 1911 to August 1912 spent at Prague, several important advances
were made: first analysis of the gravitational bending of light; the gravitational red
shift; the dependence of the speed of light on the gravitational field; and probably
more important than all these, the understanding on the one hand that Newtoniaxi
gravitation and special relativity were both incomplete, and on the other hand that
the equivalence principle is only a local statement. Added to all these, Einstein
began to take the first steps on the long road to finding a dynamical description of
gravitation itself. ‘

By the time Einstein moved to Zurich in August 1912, the necessity of giving
up Euclidean geometry, of enlarging Lorentz invariance to covariance under general
coordinate transformations, and also of replacing the single scalar Newtonian grav- -
it:;tional potential by a ten-component metric tensor field, had all become clear.
Then he suddenly realized that the key 16 his problems lay in the Gauss’ theory
of surfaces developed in the early 19th century. His friend Marcel Grossmann in-

troduced him to the later work 6f Riemann, and then on to the Italian masters
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Gregorio Ricci-Curbastro and Nﬁo Levi-Civita. The problem posed by Einstein
to Grossmann was: use the theory of invariants and covariants under 5enerai coor-
dmate transformations to construct a suitable tensor I'y, out of the metric tensor
guv and its spacetime derivatives; thus arrive at a generalisation of the Poisson
équation for the Newtonian gravitational potential in the symbolic fprm:

-

, | o
V3¢ = 4xGp — T, (9, 'a':') = Kb,
Op = matter-radiation energy momentum tensor, .

\

K = 8xG/c'. | | (1)

However at this stage Eipstein had ﬁot jgt fﬁlly grasped the extremely subtle im-
plications of the fequirement of general covariance! On incorrect physical reasoning
. he had convinced himself tha;t the field eQuations he was looking for must have
the property that, given appropriate boundary conditions, the ten metri_t; functions
guv(z) on si»a.cetime ought to be completely determined by a given source function
Ouv(2)- In  today’s tem;inoiogy, Einstein and Grossmann had not appreciated the
gauge aspect of the problem, the fa;t that fhe freedom to perform arbitrary general
‘coordinate transformations should legitimately leave the field equations underde-
‘termined to that extent, and that this was to be expected. They were at thig stage |

deceived by the covariant constancy of the metric,

uwix =0, 4 (2)

and were unaware of the Bianchi identities. Due to these reasons, in their 1913 work
they deliberately reduced the earlier postulated general covariance under all coor-

dinate transformations to invariance under linear transformations alone, definitely
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- One can understand in retrospect what a struggle it must have meant to think-
‘through ‘and analyse such delicate problems; sométhing never before enéountered -
in my:physm@zheory;:rneeans to mind Galileo’s struggles three centuries earlier
to arrive at the most useful definition of acceleration. The resolution came during
the period July to November 1915. While the demand of general covariance under
curvilinear coordina_te traﬁsfomatiom was reinstated, for a while Einstein limited
himself to unimodular transformations for which‘thé Jacobian was unity - we see
it as the desire to avoid distinguishiﬁg scalars and tensors from the éoi"tésbondin?gf
densities: At a later stage even the demand |

ot (g,,,(,)) o *'~~(3)

on the metnc was nnposed The ﬁnal resolutlon of all these problems, and the

; elucxdatlon of the ﬁeld equatlons in complete form, came by November 25 1915:

even at tlus stage, though the Bianchi 1dentmes were not in lns grasp' thle the
ﬁeld equatxons had essentlally been cast into the form .

a1 , '

o R fz‘jgﬂﬂR = ~Kbpy, R )

the covariant conservatlon of the left hand side was regatded asa constra.mt on 1t

N

1mpose& by the conservatlon of the energy momentum tensor

e =0 (re- ggw R) =0 @
Todaysof course we do just the opposite! The right hand side is an identity, s6 for -
 consistency the sources.must obey the left hand side.
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Both the joy of discovery of the final result, and the cle;ring away of the
" misconceptions of so many years of effort, are best captured in Einstein’s own words
of 1915: “Scarcely anyone who fully understands this theory can escape from its
magic”, and much later in 1933: “The years of searching in the dark for a truth that
one feels but cannot express, the intense desire and the alternations of confidence
and misgiving until one breaks through to clarity and understanding are known
only to him who has himself experienced them”. ‘

The Action for Gravitation

Just like Newton’s enunciation of theb principles of dynamics, and later
Maxwell’s equations for the electromagneiic field, here too the new law was dis-
covered directly at the level of diﬂ'erential equations of motion. The idea of a
variational principle and an action came in each case as a later formal development.
In the case of general relativity, however, it was a very close thing indeed?. Einstein
and the mathematician David Hilbert had been in frequent correspondence,' espe-
cially during November 1915. And it happened that on November 20th, five days
before Einstein presented his final field etjuations, Hilbert submitted a paper con-
taining essentially the same equations but derived from a variational principle. It is
sobering to know, however, that he too was then unaware of the Bianchi relations!
Thus Hilbert was the first to give the correct expression for the action in general
relativity. One important difference was that while Einstein had left unspecified
the expression for the energy-momentum tensor f,,, except for its symmetry axid
covariant conservation, Hilbert had assumed a definite action for the sources too
and so had specific expressions for 6,,. Initially there was a slight misunderstand-
ing, essentially on grounds of pribrity, but it was evidently later cleared up between

them. But from a human point of view it is interesting, indeed reassuring, to see
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evidence of attachment to one’s proudest discoveries. 'Around that period, Einstein
said of Hilbert’s work: “Hilbert’s ansatz for matter seems childish to me”; and on
another occasion a little later, “I don't like Hilbert’s presentation . . . unnecessarily
special . . . unnecessarily complicated . - - mot honest in structure”. One may
well compare such exoressions of feeling with what Heisenberg and Schrédinger said
of one another’s work a decade later3. In a footnote to his paper esfablishing the
equivalence of matrix and wave mechamcs, Schrodinger says: “My theory was in-
splred by L. de Broghe and by brief but infinitely far-seeing remarks of A. Einstein.

I was absolutely unaware of any genetic relationship with Heisenberg. I naturally
knew about his theory, but because of the very difﬁcolt appearing methods of tran-
sc_:endonta.l algebra and the lack of Anschaulichkeit, I felt deterred by it, if not to
say repelled”. But Heisenberg was not to be out done, as is evioent from his letter
to Pauli: “The more I think of the physical part of the Schradinger theory, the
more abominable I find it. What Schradinger writes about Anschaulichkeit makes
scarcely any sense, in other words I think it is bullshit. The greatest result of his
theory is the calculation of the matrix elements”. What human sentiments and

expressions! May be in German it all sounds quite harmless!

Constrained Dynaﬁxics', Reduction of Manifest Covariance

Let me now return to one of my main themes. The importance of the action for ’

a dynamical system, as standing logically prior to classical equations of motion, was |
/emphasized by the development of quantum theory. An action based on a Lagrange
fonction of course also allows passage to the canonical Hamiltonian form, as a step .

in the quantisafion process. One of the first attempts to give a canonical treatment

for general relativity is due to Leon Rosenfeld, in 1930* .
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But he ran into difficulties in applying the standard rules familiar from mechan-
ics, again for the same technical mathematical reasons that had caused Einstein so
much tnoubie earlier. Namely, because of the general covariance under arbitrary

“coordinate changes, the field equations do not and cannot determine an unambigu-

ous time evolution for all ten metric field components. During the thirties Dirac

did some work of a general nature concerning such dynamical systems for which the v

Lagrangian fails to permit a simple passage to the Hamiltonian formalism®. Specifi-
cally he studied the properties of systems for which the Lagrangian is homogeneous
of degree one in- velocities: ‘

5 P2 =Ko d (6)

In'such cases he introduced the phrase “Hamiltonian equation” in place of “Hamil-

tonian function”: as one sees, the naive Hamiltonian simply vanishes. Starting

sometime in the early forties, Dirac then undertook a systematic and important’

extension of the age-old formalism of classical dynamics, creating new concepts and
methods capable of handling such and other singular Lagrangian systems. The
subject goes by the name “Constrained Hamiltonian Dynamics”, and his ﬁnﬂ com-
prehensive presentation of it was at a Canadian mathematical seminar in 1949°.
It is indeed a very beautiful Snd powerfui contribution to the general formalism of
analyticdl dqus, which reveals its true value in relativistic problems and more
recently in the analysis of gauge theories, The strongest motivation for this work
was of cqurse‘thve desire to give a satisfactory and compléte canonical treatment of
general relativity. Amt;nd the late forties and early fifties. Peter Bergmann and his

collaborators also did some very original work analysing canonical aspects of gener-

]

ally covariant field theories, and the concepts of primary and secondary constraints ’
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are due to them’. But th; setting up of a comprehensive formalism for constrained
systems, with the additional notions of first and second class constraints, their dis-
tinct transformation theoretic roles, and the important concept of the Dirac Bracket,
are all due to Dirac. The application of these methods to the Einstein-Hilbert ac-
tion for general relativity was given by him in 19588, while Arnowitt, Deser and

Misner also gave a comparable treatment soon after®.

The impoﬁmm of ihe canonical formalism lies mainly in the fact that the true
dynamical degrees of freedom are unambiguously identified and separated from
nondynamical variables. Dirac was able to show in a clean way that the four com-
ponents g,,, of the metric drop out as being essentially nondynamical, corre;ponding
to the four-fold freedom of general coordinate transformations. He found a way to
alter the Einstein-Hilbert action density, amounting to a contact transformation, to
‘make this quite explicit. However the use of canonical methods generally reduces
the extent to which manifest covariance can be maintained. Already one restricts
the possible choices of spacetime coordinate systems so that each three-dimensional
surface z° = constant is spacelike; and then one limits general coordinate transfor-
mations to those that maintain this property. As a result of referring the dynamics
to these special surfaces, the manifest general covariance of the action or Lagrangian
based treatment is considerably reduced. At the end of his efforts in 1958 Dirac
was led to say®: “One starts with ten degrees of freedom for each point in space,
corresponding to the ten g,,,, but one finds with the method here followed that some
drop out, leaving only six, corresponding to the six g,,. This is a substantial sim-
plification, but it can be obtained only at the expense of giving up four-dimensional
symmetry. I am inclined to believe from this that four-dimensional symmetry is
not a fundamental property of the physical world.... The present paper shows that

Hamiltonian methods, if expressed in their simplest form, force one to abandon the
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four-dimensional symmetry”. Somewhat later in 1962 he expressed it thus :10 ¢The
. gravitational field is a tensor field with ten components. One finds that six of tl;e .
components are adequate for describing everything of physical importance and the
other four can be dropped out of the equations. One cannot, however, pick out
the six important coxﬁponents from the complete set of ten in aﬁyway that does
not destroy the four-dimensional symmetry. Thus if one insists on preserving four-
dimensional symmetry in the equations, one cannot adapt the theory of gravitation
to a discussion of measurements in the way quantum theory requires without being
forced to a more complicated description than is needed by the physical situation.
This result has led me to doubt how fundamental the four-dimensional requirement
in physics is”. Here one may mention that Regge and collaborators have recently
tried to build up a forma]ismi which combines the virtues of differential geomet-
ric methods - which capture the essence of general covariance - with the spirit of

Hamiltonian methods, to ameliorate the situation described by Dirac!!.

The use of general curved space like three-dimensional surfaces in spacetime
for specifying initial data in a canonical framework, and the reduction in the extent
of manifest covariance when 6ne uses canonical methods, are both already familiar
within special relativity. In passing from the Galilean to the special relativistic
viev} of spacetime, the most important change is in the meaning of simultaneity.
The set of events which can be regarded as being simultaneous with a given event
gets enlarged from merely a three- dimensional (flat) section to a non trivial (open)
four-dimensional region in spacetime. This leads to far greater flexibility in viewing
a relativistic dynamical problem as the “evolution of initial data”. Already in 1932
Dirac, Fock and Podolsky built up the so-called multi-time formalism to describe a
relativistic many-electron theory'2. Thus, instead of choosing a single common time

(in some inertial frame) as the evolution parameter, one picks instead a separate
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time parameter £;, {3, . . . for each of the electrons; one must only ensure that
(classically!) the corresponding spacetime points on the various world-lines are

pairwise mutually space like.
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This formalism led later to the Tomonaga-Schwinger formalism in special rel-
ativistic quantum field theory: for a general curved space like hypersurface o in
Minkowski spacetime, one has a state vector (functional) ¥[o] which is subject to
a functional Schrdinger equation under independent local variations of '3, And
—t.me can view the canonical formalism of general relativity as the end product of this
line of development. Some ways of presenting canonical special relativistic theories,
each of which takes advantage of the enlarged region of simultaneity in a particular
way and so singles out a particular subgroup of the Poincaré group as a manifest
‘'symmetry, have also been given by Dirac'®. These are the so-called instant, point
and front forms. The first is the familiar form in which just the six-parameter Eu-
clidean group on space appears as a manifest symmetry. In the point and front
forms, however, the manifest symmetry is with respect to the homogeneous Lorentz
group, and an “unusual” seven-parameter subgroup of the Poincaré group respec-
tively. These correspond in turn to choosing initial data on a positive time like
hyperboloid with respect to a given spacetime point, which is a space‘ﬁke surface;
and on a light like hyperplane which is (almost) space like.

The Gauge Idea, Fibre Bundle Methods

Let us now turn to another line of development, leading to a different view
of the summit. This has to do with efforts to modify and enlarge the geomet-
ric foundations of general relativity, to encompass other physical fields of force or
fundamental interactions. The first major attempt in this direction, due to Her-
mann Weyl, was in 1918, and this is the origin of the gauge idea!>. The aim was
to unify gravitation and electromagnetism in a single comprehensive geometrical
framework. Let us look briefly at the main ideas. In Einstein’s theory, based on a

(pseudo) Riemannian metric and accompanying geometry, there is a definition of
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parallel transport of vectors and tensors given by the Christoffel connection. This is
symmetric and is fully determined by the metric. Lengths and angles among vectors
are preserved under this parallel transport, so that the metric itself is covariantly
constant. However after parallel transport over a closed circuit a vector may end
up with an altered direction, which then signals the existence of nonzero curvature.
Weyl extended this to allow for lengths also to change under parallel transport. He
assumed that parallel transport was given by a symmetric affine connection; this
amounts to saying that one can choose geodesic coordinates around each space-
time point, or equally well that the torsion vanishes. But under parallel transport
lengths of (contravariant) vectors as determined by a metric g,,(z) could change,
while angles were still preserved. Parallel transport over a closed circuit could then
result in a vector changing both direction and length. If a vector Vp located at a
space time point P with coordinates z* is transported to a nearby point Q with
coordinates z* + 8z, we get at Q a vector Va:

%

v o /
Vg e
g x

P:xt

VA = V& — T, 6xPVE,

T%, = T%, (7

As angles are to be preserved, the length change suffered by Vp must be by a
fractional amount which is itself Vp - independent. Therefore there must be a

linear form in §z” such that

9 (QIVQVE = (1 - Ay(x)6x")gu(P)VE V3. (8)
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So the connection coefficients are not just the metric compatible Christoffel coeffi-
cients I(®), there ig-an additional part coming from the vector field A, :

’ 1
Ty, = o + 3 (szA., + 6:A,.-g,,.4*),

I{®* = Christoffel connection coefficients. (9)

»

(Weyl’s geometry thus accommodates both a metric tensor field guv(z) and a fun-
damental vector field A,(z)). Correspondingly, with respect to the covariant dif-

ferentiation defined by T, the metric is not constant:

Dy gy = (Bx+Ty +T3)g- # 0. - (10)

Since lengths are not preserved under parallel transport, in Weyl’s geometry
we have the freedom to change the unit of length independently at each spacetiine
point. Thus, compared to the Riemannian case, we now have both the freedom to

perform general changes of coordinates and to perform “changes of gauge”:

guv(z) — Q;w(z) = ec(z).‘hw(z),
) (z) = T)M(z) = TL(2), (11)
VE(x) - VH(x) = VA(x)

The last two are natural assumptions, and consistency then gives,

Ay(z) — A,'p(z) = Au(z) - 8u0(2). (12)

On this basis Weyl tried to identify A,(z) with the vector potential of electromag-
netism. The field strength
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Fu(z) = 8,4.(z) - 8,4,(z), (13)

is of course gauge-invariant; and if it is nonzero it indicates that after parallel
transport over a closed circuit the length of a vector definitely changes.
Each significant field X(z) in Weyl’s theory carries a weight n, the integer

appearing in its gauge transformation law:

X(z) = X'(z) = @ X(2). v (14)

(Exceptions, such as A,(z) which has a linear inhomogeneous law of change, would
» ang

be obvious). Thus for example we have

n=1:gu), Vax), Tamlx)i

n = 0 : VA(x), “:,, Rzup(x),_R!,,f(x);,

n = -1:¢"%z), Rz). (15)

Here R}, , is the curvature tensor formed out of I‘;);, R,, the corresponding Ricci

tensor, and R the curvature scalar. A combined gauge and coordinate covariant

derivative V, can be set up, symbolically

Vp = B,,+P;‘.+nAp, - k (16)

and then the metric obeys

V'\ g“ll = 0. (17)



There are tell-tale differences between a Weyl-type theory and conventional
general relativity: geodesics are no longer lines of extremal path length since the
former are determined by I'), and the latter by g,,; and the Lagrange density
which has to be a scalar density of gauge weight n = o can no longer be taken to be

V v/—9R whose weight is n = 1. Thus the gravitational field equations are ﬁeceésarily
quite different from the Einstein equations. Some candidate expressions for the
gravitational action density are

V=9(R***R,,,, or R*R,, or R?). (18)

Nevertheless, it can be arranged that the perihelion shift and bending of light are
the same as in ordinary general relativity.

It was however soon pointed out b); Einstein that this scheme was physically
untenable. Linking up gauge changes in the electromagnetic vector potential with
real local changes in time and length units would mean that different chemical
elements would not have definite sharp and characteristic spectral lines af all. But
the idea that such changes in this vector potential should be the accompaniment of
some other physically important transformation in some other significant quantity
survived. Indeed inspite of its being untenable in the specific form in which he first
proposed it, Weyl felt “it was so beautiful that he did not wish to abandon it and
80 he vkept it alive for the sake of its beauty”. Almost a decade later, the gauge
idea for electromagnetism found its proper expression after the discovery of wave
mechanics by Schradinger in 1926. Namely V. Fock!® and F. London!? in 1927, and
Weyl himself in 1929’8, saw that by combining the classical canonical rule

e
Pu — Pﬂ_;An(z) (19)
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for coupling a charged point particle to the electromagnetic field, with the wave-
mechanical prescription for the energy-momentum operator

B 8 ‘

T (20)
designed to act on the complex wave function ¥(z) of a point particle, one obtained

Pu —

=
|

—

i) 9 e
[ " T o @)

-
-

for coupling a charged quantum mechanical particle to the electromagnetic field.
This is the origin of the concept of “minimal electromagnetic coupling”. In contrast
to the doubly covariant derivative V, in Weyl geometry, here 8/8z* and A,(z)
combine with a relative puré ,ixixa’ginary, rather than real, coefficient. This then
meant that the gauge change (12) in the vector potential goes with a phase change

in the complex wave function of a charged particle:

¥(z) — ¥'(z) = elt"y(z). (22)

And the combination (19) of 8/8z* and A,(z) enjoys the property

(5 - @) = b (L - Zae)se). o

Thus instead of viewing the gauge transformations of electromagnetism as an

expression of the noncompact group R of real numbers under addition, it is physi-

cally to be seen as an expression of the compact groﬁp U(1) of complex quantum

mechanical phase factors'®. Indeed even the gauge transformation law (12) for
A,(z) can be expressed via such ph#se factors:

~ie

A (z) = e (A,.(:l:) - -?f %) eltote) , | (24)
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* While this is still a local transformation, varying &om point to point in spacetime,
the actif)n itself is not on spacetime or on the metric, but in an internal U(1) space
attached to each point of space- time.

The group U(1), besideé being compact, is also Abelian. Over the ensuing
decades the highly nontrivial generalization to a compact but nonabelian internal - -
gauge symmetry group G was achieved, starting with Oskar Klein in 1938%° and
independently rediscovered by C. N. Yang and R.L. Mills in 1954?!. The motivations
came from nuclear and elementary particle physics. Here one envisages A “copy” of
the group G, or in some circumstances the space V of a representation D(g) of G,
“attached” to each point of spacetime; and then one has a multicomponent field ¥(z)
belonging to this representation space. One also has a nonabelian generalization
of the real vector potential of electromagnetism to a vector potential A,(z) which
is simultaneously a hermitian matrix in the Lie algebra of G (corresponding, say,
to the repreaenté.tion D(g)), and a covariant vector on spacetime. And when one
subjects ¥(z) to a spacetime dependent transformation of G, A, changes in a linear

inhomogeneous fashion such that the combination 8, — ieA, again behaves nicely:

¥() = D(s(a))¥(a),
460 = 2(s) (4+ £0,)(st)) ",

(- sedy@)¥'@) = (o) (Bu—icta) 9@ (29

There is also a nonabelian field strengtﬁ tensor F,,(z), again a hermitian matrix
in the Lie algebra of G, which unlike the electromagnetic case is gauge covariant

rather than gauge invariant:
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va(z) = 8“.4,(2) - O,A,.(z) - ie[A#(z)! Av(z)]v

Fi(e) = D(g(z))F,,,(z)D(g(z))-l. ()

The nonlinearities in these expressions as compared to eleciromaguetism, when
G = U(1), are evident. Intieed the nonabelian A4, and F,, here remind us of the
connection I and curvature R on an affinely connected manifold or on a Riemannian
manifold!

The proper mathematical framework for viewing these structures turns out
to be the theory of fibre bundles, more especially principal fibre bundles”. Here
one has a base manifold M, for instance spacetime, and a copy of a Lie group G
attached to each point Qf M, as a fibre sitting “on top of” that point, in a smoath
way. Then the total space P looks locally like the Cartesion product of a portion
of M with G, but globally it need not have the character of a product at all. In
fact the principal fibre bundle is nontrivial precisely to the extent to which it is
globally distinct from M x G. What is globally given, as schematically indicated in
the figure, is a projectio;m mapIl: P —» M.

) T
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which takes all the points on each fibre to the base point in M “under the fibre”.
Also globally given is an action of G on each fibre, which is both free and transitive;
reéalﬁng that each fibre is essentially G itself, this action is locally realised as, say,
right translation using the gréup composition law of G. In this set-up, the gauge or
vector potential A, is a local description of a connection on P: a rule for parallel
transport. A connection on a principal fibre bundle is a quite delicate and beautiful
£oncept - for each small displacement z — z + §z in the base manifold M, it gives
a definite rule to move from any point in the fibre on top of the point z to a definite
corresponding point in the fibre on top of z + §z. Remember here that each fibre
looks like and ¢an be taken to be the group G itself. Thus a connection tells us
how to “lift” an open or closed curve in the base M to definite curves in the total
space P, and these lifted curves go into one another under the- global G action on
the fibres. However the lifts of a closed curve in M could well be open in P: one
returns to the same fibre but to a generally different point than the starting one!
~ This signals the existence of and is described by the curvature, of which F,, is a
local expression.

The theory of principal fibre bundles q.nd connections on them was set up by
Cartan and others quite early, in the twenties and thirties. (It was around the
same time that Cartan developed the elegant calculus of differential forms). The
nice thing in this framework is that the linear inhomogeneously transforming vector

’ potential A, defined over (local portions of) the base manifold M is elevated to a

| covari-a.nﬂy behaji’n’g geometrical object - a connection form - on the total space P.

Both A,, and F,, on M are local descriptions via local cross-sections of G-covariant

~ and globally defined geometrical objects more properly viewed as existing in the

’larger space P. Then the gauge transformation rules for A, and F,, are results of
. changmg thxs local description by changing the cross-sectxon

- 20



In this language one can say that while Weyl’s original theory attempted to view
electromagnetism via an R-bundle over spacetime M, each fibre being essentially the
entire real line viewed as a group under addition, later developments in quantum
mechanics replaced this by a U(1) - bundle over spacetime. At the same time, Weyl’s
attempt to modify Riemannian geometry got transmuted to a scheme in which
the gauge transformations of electromagnetism are tied up with transformations
in an internal space, referring to a non-spacetime symmetry. How does all this
now connect up with general relativity ? Can we with this additional insight and
the later development of nonabelian gauge theory go back and reexamine general
relativity itstlf, and view it as a kind of gauge theory ? Here the story goes back
again to Cartan and his work in the twenties!>> While a given base manifold M
(of dimension n, say) and a given Lie group G can in principle be combined in
many inequivalent ways to form many principal fibre bundles, and one could then
conceive of connections on each of them, there is a particular case which is specially
singled out: a given base space M on its own determines unambiguously a particular
principal fibre bundle for which the fibre or structure group is GL (n, R). Forn =4
we have GL (4, R). The point is that there is no freedom in the way in which M and
GL (n, R) are glued together to form this particular bundle, the so-called frame
bundle on M; it is completely fixed by the global topological properties of M itself.
The key concept here is Cartan’s “repere mobile”: a freely chosen anholonomic non-
coordinate based frame or basis of vectors at each point of M. In four dimensions we
call it a vierbein or tetrad. Even without a metric on M we have the framework of
this specific principal fibre bundle in which affine connections and parallel transport
of vectors and tensors can be thought of : we need to deal with connections on the
frame bundle of M. In a local description this connection is given by affine connection

coefficients I‘:,(z) over M, which are in general not symmetric, so there is room for
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torsion. Thus while in a general principal fibre bundle with a group G over a base M
the key concepts are just those» of connection and curvature only, in the particular
case of the frame bundle we have connection, curvature and torsion (not to speak of
torture) as well. Another way of singling out this particular principal fibre bundle
is to say that with the help of the dual basis to the vierbein, which constitutes
a covariant geometric object or form called the “soldering form”, the individual
fibres GL(4, R) are soldered to points of the base M in a more intimate way than
the fibres of a general principal fibre bundle. There is extra geometrical structure
in & frame bundle. All this was worked out by Cartan in complete generality by
about 1822! In case M carries a (pseudo) Riemannian metric as well, the tetrad can
nu.turdly be chosen to bring the metric g, at each point to diagonal Minkowski
form, and then the Lorents group SO(3,1) appears as a local gauge group as well.

That the fibre bundle concept should be useful to handle a spacetime can
be seen in another more elementary sense as well. In fact this becomes evident
in the passage from the Aristotelian to the Galilean principle of relativity??. In
Aristotelian physics governed by the notions of absolute time and absolute space or
absolute rest, each of the two statements - “the events A and B are simultaneous in
time”, “the events A and B occur at the same spatial location at different times” -
has an invariant meaning. Thus spacetime is just the Cartesian product of space and
time. But with Galilean relativity where two inertial observers could have a uniform
relative velocity, the second statement above no longer has an invariant meaning !
Simultaneity in time still has an absolute meaning but not so coincidence in space.
Therefore spacetime is not a Cartesian product any more. Since time differences
between events have absolute meaning we can say that what is well-defined is a
projection from spacetime on to the one- dimensional time axis, 50 the former is a
fibre bundle over the latter as base, with each fibre isomorphic to three-dimensional



space. With special relativity, of course, there are further changes and this bundle

structure is.lost.

One can now try to close the circle and ask: are geometrical theories of gravity
also gauge theories, similar to Yang-Mills theories based on an internal symmetry?
The answer is a qualified yeé, to some extent dependent on definitions of terms. An
attempt to answer this question was first made by Utiyama in 19562* and completed
more satisfactorily by Kibble in 19612° and Sciama in 19622%. The situation is
that if one starts with a special relativistic Lagrangian field theory invariant under
global Poincare’ transformations, and in the spirit of the Yang-Mills argument one
makes the ten parameters of the Poincaré group arbitrary independent spacetime
functions, one can then in a natural and intelligent way modify the Lagrangian so
as to be invariant uﬁder this gauged Poincaré group. The resulting theory is then a
generally covariant field theory of the same general type that Cartan and invented
in the 1920’s! This is called the Einstein-Cartan approach to gravity, on account of
an interesting correspondence between them in the period 1929-1932 when Einatein
was working with the idea of absolute or distant parallelism and Cartan told him,
as usual, that he had done it years ago?’. Adopting the Yang-Mills method from
an internal compact symmetry group G to the Poincaré group, one naturally finds
that several geometric objects have to come in: a vierbein or tetrad h on spacetime;
a “gpin-connection” A which is just like a Yang-Mills gauge potential but with the ‘
Lorentz group SO(3,1) (more properly SL(2,C)) as a local internal gauge group;

and an affine connection I' on spacetime:

h% = vierbein or tetrad;
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hy = inverse to teirad = components of soldering form;

A;ﬁ = —AY = spin connection =

Yang — Mills gauge potential for local SL (2,C) transformations;

I‘;‘,,, = affine connection coef ficients on spacetime. (27)

Oneis dealiné here with a principal fibre bundle on spacetime which is a combination
of the frame bundle and an SL(2,C) bundle! There is thus room here for both
curvature and torsion, unlike a pure internal gauge symmetry; this agrees with what
we said earlier, namely the frame bundle on a base manifold has richer structure
and more intrinsic geometric objects than a general principal fibre bundle. Giving
due allowance for these facts, one can view the Einstein-Cartan theory as the result
of gauging the Poincaracutee group of special relativity. As the vierbein has one leg
in each group - GL(4,R) and SL(2,C) - contained in the fibres, the natural condition
to impose is

Vuhl = (8, + T, + Ak =0. (28)

This is like the square root of the covariant constancy of the metric in ordinary
general relativity! The vierbein and the spin connection can be regarded as the
fundamental gravitational variables. In terms of them, both the metric and the

affine connection, and then the torsion and the curvature, are determined:

py = h;n hy;
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T}, = b3 Dy (A)h,
D,(A) = SL(2,C) — covariant derivative;
T;I‘,, = ;I‘:, - I‘,’,‘; = torsion;v

R:up = a"P:p it aPF:v + TJ,T% :—rﬁvr';p (29)

ool pv
While the coupling of matter fields to the gravitational variables is unambigu-
~ ously determined, one cati examine various possible choices for~i_:he gravitational
action. Ome is free to set the torsion equal to zero from the beginning as a kine-
matical condition; then we have left the minimum extension of conventional general
relativity needed to handle spinorial matter fields. If the torsion is present, its
source is the spin density of matter; and whether or not it propagates depends very
much on the choice of gravitational Lagrangian. ’

- There have been generalizations of all this in several directions?®. For instance
one can put the entire Poincaré group, rather than just its homogeneous part,
into the fibre; then the vierbein and the spin-connection can-be looked upon to
some extent as similar geometric objects, as the former become translational gauge
potentials. Naturally we do not go into details here, but here we have another view

of the summit.

General Relativity and Quantum Theory
Now I come to the last view of the summit that I wish to present. This has to
do with an interesting comparison between quantum theory and general relativity.
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As you may know, Bohr tried on many occasions to win Einstein’s approval and
support for his Principle of Complementarity, a key ingredient of his interpreta-
tion of quantum mechanics; but these of course Einstein never gave. That Bohr
tried very hard to convince Einstein is clear from a phrase in his 1949 summing
up of their years of debate when he says?®: “The principal aim, however, of these
considerations, whvichvw;re not least inspired by the hope of inﬁuencing Einstein’s
attitude, was . . .”. It is then interesting to see what attitude Bohr took to-
wards general relativity! I began by saying that it is common to regard general
relativity as the summit of classical physics. Bohr however viewed it differently. He
felt that “The abstract character of the formalisms conéerned is indeed, on closer
examination, as typical of relativity theory as it is of quantum mechanit;s, and it
is in this respect purely a matter of tradition if the former theory is considered
as a completion of classical physics rather thaﬁ as a first fundamental step in the
thorough going revision of our conceptual meaﬁs of ;:‘omparing observations, which
the modern development of physics has forced upon us”3?. Presumably in the hope
of convincing Einstein(!), he went even further and tried to draw analogies between
the two theories. For instance he pointed out that in quantum mechanics, while
object and apparatus are both ultimately quantum mechanical in4natu.re, the theory
of measurement makes us distinguish them and insist that the latter be describable
in the limiting classical language; analogously in relativity while general covariance
_tends to obliterate the difference between time and space coordinates, we are ul-
timately obliged to recognise the physical distinction between them. As another
~ instance he said that ixi relativity our description of any phenomenon depends in an
essential way oﬁ the spacetime coordinate system, even though it ma.y be supported
by definite rules of transformation; the analogy in quantum mechanics is that com-

" plementarity limits our attempts to interpret results of experiments independently
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of the experimental apparatus or arrangement. In case it is just a bit difficult to
follow this, I offer you two statements, one by Dirac on relativity and the other by
. Heisenberg on quantum mechanics, which may help. Speaking of the metric tensor
 components Dirac says®!: “They determine both the coordinate system and the
.curvature of the space... . They describe not only' the gravitational field, but also
the systezh of codrdinates; The gravitational field and the system of coordinates
are inextricably mixed up in the Einstein theory, and one cannot describe the one

without the other”. Compare this with Heisenberg’s statement on the nature of |
the wave function in quantum mechanics®?: “This probability functiozn represents
" a mixture of two things, partly a fact and partly our lixiowledge of a fact”. There is

some similarity in these statements , and this is possibly what Bohr was hinfing at.

Conclusion
I would now like to conclude, in a manner befitting this place and this occasion,
this series of long-distance views of general relativity I have tried to bring before
your eyes. But here I am a victim of the phenomenon of “antiéipatory plagiarism”
which is described in a recent article by Gﬁnther,Stent in this way :3% “Anticipatory
plagiarism occurs when someone steals your original idea and publishes it a hundred
years before you were born”. AIt so happens that in a lecture to the Indian Académy
of Sciences in 1985 S. Chandrasekhar already said exactly what I would like to
say now. As there is hardly any chance of improving upon his expression let me
unote him verbatim®*: “The pursuit of sciem;e has often been compared to the
scaling of mountains, high and not so high. But who amongst us can hope, even
in imagination, to scale the Everest and reach its summit when the sky is Blue and
the air is still, and in the stillness of the air survey the entire Himalayan range in

the dazzling white of the snow stretching to infinity? None of us can hope for a
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comparable vision of nature and of the universe around us. But there is nothing
mean or lowly in standing in the valley below and awaiting the sun to rise over

Kanchenjunga”.

.

28



Referehces

1.

© @ N2 oo

10.
11.

A. Pais, Subtle is the Lord... The Science and the Life of Albert Einstein,
Oxford University Press (1982), Chapter v, especlally p.250 ff. ‘

- Ref (1), p.257 f.
. See for mstance, w. Moore, Schrodmger life and tbought, Cambndge Umver—

sity Press (1989) p. 211, 221.

L. Rosenfeld, Ann. Physik 5 113 (1930) ; Ann. Inst. H. Poincaré 225 (1932).
P.A.M. Dirac, Proc. Camb. Phil. Soc. 29 389 (1933). o

P.AM. Dlrac, Can. Jour. Maths. 2 129 (1950) o

. J.L. Anderson and P. G Bergmann, Phys. Rev. 83 1018 (1951)
. PA M Dirac, Proc. Roy. Soc. A246 333 (1958).
. .R. Arnowitt, S. Deser and C.W. Misner, Phys. Rev. 116, 1322 (1959), 117

1595 (1960).\
P.A.M. Dirac, Scientific American 208 45 (1963). ‘
T.Regge, ‘The Group Manifold Approach to Unified Gravity, Les Houches Lec-

~ tures (1983).

12,

13.

14.
15.

P.A.M. Dirac, V.A. Fock, B. Podolsky, Phys. Z. Sowjetunion 2 468 (1932);

-reprinted in Quantum Electrodynamics, J.Schwinger (ed.), Dover Publications,

Inc., New York (1958).

See, for instance, Quantum Electrodynamics, J.Schwinger (ed.), Dover Publi-
cations, Inc., New York (1958). R

P.A.M. Dirac, Revs. Mod. Phys. 21 392 (1949).

H. Weyl, Space Time Matter, 4th edition (1922), reprinted by Dover Publica-
tions, Inc., New York (1952), § 34, 35; see also W.Pauli, Theory of Relativity,
Pergamon Press (1958), p.192 ff.

29



16.
17.
18.
19.

20.

" Cooperation, League of Nations) (1938), pp. 77-93.
21.
22,

23.

24.

28.

29.

V.A. Fock, Zeit. f. Phys. 39 226 (1927). _

F. London, Zeit. f. Phys. 42 375 (1927); Naturwiss. 15 187 (1927).

H.Weyl, Zeit. f. Phys. 56 330 (1929).

C.N.Yang, Geometry and Physics, in To Fulfill a Visxon Jerusalem Einstein
Centennial Symposium on G’auge Theories and Unification of Physical Froces,
Y.Neeman (ed.), Addison - Wesley (1981).

0. Klein, in New Theories in Physics (International Institute of Intellectual

C.N. Yang and R.L. Mills, Phys. Rev. 96 191 (1954).

See for instance, A. Tra.utman, Fibre Bundles Assbciated with Space-Time,
Reports on Mathematxca.l Phymcs 129 (1970), Differential Geometry for Physi-
cists, Bibliopolis, Napoli (1984) v
E. Cartan, On Manifolds with an Affine Connection and the Theory of General
Relativity, translated by A. Ashtekar, Bibliopolis, Napoh (1986).

R. Utiyama, Phys. Rev. 101 1597 (1956).

. T.W.B. Kibble, Jour. Math. Phys. 2 212 (1961).
26.
27.

D.W.Sciama in Recent Trends in General Relativity, Pergamon Press (1962).
Elie Cartan - Albert Einstein - Letters on Absolute Parallelism 1929-1932,
Robert Debever (ed.), Princeton University Press (1979).

For more. details see, for instance, A.R. Prasanna, Differential Forms and
Einstein-Cartan Theory in Gravitation, Gauge Theories and the Early Uni-
verse, B.R. Iyer, N.Mukunda and C.V. Vishveshwara (eds.), Kluwer Acadennc,
Publishers (Dordrecht) (1989).

N.Bohr, Discussion thb‘ Einstein on Epistemological Problems in Atomic
Physicsin Albert Einstein: Philosopher Scientist, The Library of Living Philoso-
phers, Inc., Evanston, Illinois, Vol.7 (1949) p.199; re;irinted in N.Bohr, Atomic

30



30.
3L

32.
33.

Physics and Human Khoﬁdgdge, Science Editions, Inc., New York (1961), 13;52.
N.Bohr, Atomic Physics and Human Knowledge, Science Editions, Inc., New
York (1961) p.65. R ‘ |
P.A.M. Dirac, General Theory of Relativity, John Wiley, New York (1975),
p9,26. ‘

‘ W.Heisenberg, Physics and Philosophy, Harper & Row, New York (1958), p.45.

G. Stent, Complexity and Mple@entadty in the Phenomenon of Mind, Uni-
versity of California (Berkeley) Preprint (1989); the phrase is due to Robert
Merton. . k

S. Chandrasekhar, Truth and Beauty - Aesthetics and Motivations in Science, ‘

Chicago University Press (1987), p.26.

-

3



