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Cold Compact Stars :
Laboratory for New Physics
S. Mukherjee, Department of Physics, North Bex}gal

University, Darjeeling.

1. INTRODUCTION

I am thankful to the Indian Association for General Relativity and Grav-
itation (IAGRG) for inviting me to deliver the Vaidya - Raychaudhuri
Endowment Award Lecture. I feel greatly honoured. Professor Prahlad
Chunilal Vaidya and Professor Amal Kumar Réychaudhuri are distin-
guished relativists, and they have made significant contributions to the
developments of the last six decades in the fields of relativity, cosmology
and relativistic astrophysics. They taught and inspired students belong-
ing to almost three generations. The relativity group in the country and
TIAGRG in particular, owe a lot to them for their inspiring leadership.

In this lecture, I shall review the present status of our understanding of
the physics of very compact stars, which have recently been observed (see
Table 1) and also outline selectively some of the ongoing research work in
these fields. It is known that gravitational interaction is very weak com-
pared to other fundamental interactions, and it is reasonable to neglect it
while studying atomic or nuclear processes. However, very strong gravi-
tational fields may occur in highly condensed matter inside these compact
stars. These provide a natural laboratory for testing other interactions
in extremely dense matter. Although, some laboratory experiments are

in progress to study the physics of highly condensed matter (e.g., high



energy heavy ion collisions), the results are still preliminary and at best
inconclusive. An immediate problem of current interest is to study the
nature of constituents and their interactions when ‘the-density exceeds
the normal nuclear density, p,, ~ 4.6 x 10*gm/cm?®.. Cold compact stars,
where the density reaches a few times the nuclear density, may provide
useful information here. A description of these stars cannot be given by
the Newtonian theory and one needs the general theory of relativity to
study the structure as well the stability of these objects, Mathematical
techniques generally used for the study of such compact obJects are dis-

cussed in the next section.

Till very recently, all stars which are more compact than white dwarfs,
but are not massive enough to be black holes, have been given the name
neutron stars. The possibility of a stat, whose gravitational collapse is
prevented by the pressure of the cold degenerate neutron gas was mooted
even before neutron was discovered by Chadwick in 1932. Two years later,
Baade and Zwicke gave the name neutron star and also proposed that a
supernova explosmn mgna.ls a transition from an ordlnary star to a neu-
tron star. In 1939 Tolman Oppenhelmer and Volkoff made ploneenng
studies on the structure of neutron stars. Most of the subsequent work on
neutron stars have made use of the techmques developed by these work—
ers, although a vanety of equations of sta.te of matter, dependlng on the
constituents and the density mvolved have been studled In thls lecture,
we will consider mostly stars which are more compact than the standard
neutron stars. Typically, this means stars with a radius < 10 km and a
mass ~ 1 Mg. Some candidates for very cempe,ct stars are listed in Table
1. ’



Compact Stars M (Mgp) Radius (km)

Her X -1 0.98 £+ 0.12 6.7+ 1.2
4U 1820 - 30 08-1.8 <10
4U 1728 - 34 ~ 1.1 <10

SAX J 1808.4 - 3658 | (i) 1.435 (SS1) | (i) 7.07
(i) 1.323 (SS2) | (i) 6.55

PSR 1937 + 21 <24 <115

RX J 1856 - 37 0.9 £ 0.2 < 673

Table 1: Some candidates for compact stars.

2. TOLMAN-OPPENHEIMER-VOLKOFF EQUATION

The standard method of studying cold compact stars makes use of the
equations for hydrostatic equilibrium of a relativistic fluid, known as Tol-
man, Oppenheimer and Volkoff (TOV) equation. One assumes a static

spherically symmetric metric for the interior of the star given by,

ds2 = —e2(dt? 4 e2“§’)dr2 + r2(d6? + sin® 0dp?). (1)

The matter inside is assumed to be a perfect fluid with an equation of state



(EOS), p = p(p), where p(r) is the proper pressure and p(r), the proper
energy. density at the radial coordinate r. Given the EOS, all macroscopic
properties of the stars (mass and radius, in particular) can be determined
for a given eentral density, s, by solving the TOV equations:

-1
—Z—f = rlg(p +p),(2M (r) +pr3) (1 - ZMT(Q) and  (2)
WO _ Loew, 3)

where we have made the conventional choice, 87G = ¢ = 1.

Given the EOS, p = p(p), one chooses a value of p. = p (r = 0), and starts
integrating the equations (2) and (3) from the centre of the star onwards,
using the initial condition M(r = 0) = 0, and continues till p(p(r)) drops
down to zero at some value of r = b, which we interpret as the radius
of the star with a central dénsity pc. The mass of the star is given by
M = M(r = b) and thus, one can study the mass-radius (M — b) curves

for various central densities.

The TOV approach has been very useful in the "study of neutron stars,
particularly where one can model the EOS of the constituents. Consider-
able results are already available for such stars. However, as the density
exceeds twice the nuclear density, the composition as well as the EOS
become very uncertain. A number of pbssible, but exotic compositions
have already been considered. These will be discussed in Sections 6 and
7. It is hoped that observational results will soon be available to settle
the complex problem of the composition of very compact stars.



However, since the application of TOV equations requires prior knowl-
edge of the EOS, compact objects make the exercise difficult and at most
tentative. An alternative approach initiated by Vaidya and Tikekar can
provide useful results here. This will be discussed in the next section.

3. VAIDYA-TIKEKAR APPROACH

In this method, we choose a suitable geometry for. the 3-space and then
determine an appropriate equation of state for the matter in the cold
compact star. This approach is convenient in cases where the equation of
state is not known or uncertain. The method becomes particularly simple
when the choice of the 3-geometry permits an exact solution of Einstein’s
equations. The ansatz of Vaidya and Tikekar [1], for the metric function,

1-}-/\7'2/‘R2 o
=T-a @

has been found to be very useful. ‘Here, A and R are two constant pa-

et

rameters, which measure the spheroidal characters of the t = constant
hypersurface, which is spheroidal when embedded in a four dimensional
Euclidean space. These parameters will eventually be related to the prop-
erties of the coxistituent matter. Since one of the metric functions is
known, using Einsteiri’s equation, one can derive a second-order differen—

tial equation for the other metric, €2 = 9?2, given by

(1= 22 + Zeps + (A + 1)y =0, (5)

where, Z2 = 'X'3\FT (1 - %) and v, is the derivative of ¢ w.r.t. Z.



The solution of the equation (5) was obtained by Vaidya and Tikekar for
A = 2 [1], and by Tikekar [2] for A = 7. Maharaj and Leach [3] gave
the solution for sets of values of A. The general solution, obtained by
Mukherjee, Paul and Dadhich [4], is given by

_ cos[(n+1)¢+9]  cos[(n ~1)¢ +1]
¢ =y= A{ 1 =1 } ®

where ( = cos™! Z, and A and v are constants to be determined by
matching the solution With the exterior vacuum solution of Schwarzschid

at the boundary, » = b, i.e.,

e® =1- 3‘2—4 (7)

e2u(8) — (1 - %) | - ®

The energy-density and pressure are given in this model as

1

y 2
T | ©
1 9270,
P~ [ e 1)

The radius of the star is determined from the condltlon that the pressure

vanishes at the boundary, r = b, which gives

¢'(Zb) . _/\ +1
W(Zy) 22

The mass of the star is given by,

(11)




a+ A)63 /R?
2(1 + Ab / R?) "~
Each of the two metrlc functlons have two pa.rameters, A and R, and A
and ~. Two of these are utilised to match with the exterior Schwarzschlld

(12)

metric, and one is utilised to fix the g;ven input, radius, central density
or surface densityQ We are thus left with one parameter, say A, which
may be used to characterize the relevant equation of state, which is given
implicitly by equb,tidns (9) and (10). Thus, the model describes a one-
parameter family of EOS for a given M and b. It is pos51b1e that not all
the EOS will be realised in nature.

The model, though very simple, satisfies the physical constraints of a re-
alistic star, if A > . Following the method of Chandrasekhar, Knutson
[5] has also shown that the Vaidya-Tikekar star with A = 2 is stable with
respect to small radial perturbations. Calculations with the general solu-
tion (6) have also:confirmed this stability for other values of A [6]. . -

The simplicity of the model have inspired a number of workers [7-9] to use
it to study different aspects of compéct stars. The model has also been
generalised to the case where the star has a charge [10] or anisotropy of
some special types [11}. .

In the context of compact Stq.rs,, two cases may bev ment-ion‘ed; SAX
J1808.4 - 3658 is a compa.ct4 star in a low mass X-ray binary system
and is a candidate for a strange star. Dey, et al. [12], have given an
equation of state for strange matter’based on a model in which one uses

an interquark potential with the following features :
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(i) The model has asymptotic freedom.

(ii) It shows confinement at zero baryan number density (ng = O) and
deconfinement at high np.

(iii) The quark mass is a function of density so as to take care of the
chiral symmetry restoration, and '

(iv) It gives a stable configuration for charge zero, fB-stable strange mat-
ter. '

The resulting EOS has been approximated by Gondek - Rosinska, et al.
[13], as ’ )

P =a(p-po),

where a and p, are two parameters. Two sets of parameters were consid-
ered : (i) a = 0.463, p, = 1.15 x 10> gm/cc, which gives the EOS, SS1,
leading to a mass, M = 1.435 M and radius b = 7.07 km; (ii) the set
'EOS, SS2 with parameters a = 0.455, p, = 1.33 x 101° gm/cc, which
gives M = 1.323 My and b = 6.55 km. The calculations [6] are done
with TOV equations and were repeated in the Va.idya-Tikékar approach,
taking M = 1.435 My and b= 7.07 km as input parameters, and it was
found that, for A = 53.3, the resulting EOS agrees accurately with the
EOS SS1. Similarly, very good agreement was noticed when the parame-
ters of EOS SS2 were considered. The exercise has an important message.
It shows that one can get useful information on the EOS of the matter
inside the star also from geometric considerations.

11



4. MYSTERY OF MAXIMUM MASS

* In relativistic astrophysics the problem of maximum mass of a very com-
pact star is an important issue. This upper bound on mass, in the case
of a very compact object, is crucial for making the distinction between a
blackhole and a ‘normal’ compact star. The existence of a maximum mass
for a configuration of marginally felativistic' fermions can be shown easily

by following essentially the arguments given by Landau way back in 1932.

Consider a cold star of radius R containing N fermions so that the num-

ber density of fermions, n ~ N/R3; Pauli’s exclusion principle gives for
. . 1 .

the volume occupied per particle ~ ... We may use Heisenberg’s uncer-

tainty principle to estimate p ~ %n'/3. The fermi energy of the degenerate

fermions can now be estimated :

If the particles are relativistic,

: heN1/3 ,
Ep ~ pc ~ hnt/3c ~ 7 - (13)
whereas for non-relativistic particles,
H2N?/3 _
Ep ~p* ~ — 3 (14)

The gravitational energy per particle is given by,

12



 GMmp _ GNm} |
Fer——g—=""% - (15)

where M = Nmp,mp being the mass of the baryons. The mass of
the star is essentially determined by mp. The total energy per particle
(relativistic) is given by,

heN'/3  GNm%
R R
which should be minimized to get an equilibrium configuration. We con-

EFE=FEp+Eg= (16)

sider the following situations :

(i) If E happens to be negative at the relativistic regime for a given R,
it will decrease further with decreasmg R. Thus, there will be no
stable conﬁguratlon

(ii) If E is initially positive, it will decrease with increasing R, but Ep
will also decrease. Hence, a stage will come when fermions become
non-relativistic and the fermi energy Er will scale as Elg. Hence, E
will eventually become negative. But, E tends to zero as R — oo,
showing that E must have a minimum at some value of R, which will
correspond to an equilibrium state. Also, it follows that N should
“have a maximum value, mazs correspondmg to the case where this

minimum value of E i is zero. Thus,

he \3/2 o
Nm“N(Gm%) ~2x 1057 (17)

and hence Moz ~ Npasz - mp ~ 1.5Mg. We note the following :

(i) Mmaer may be modified by a factor ~ O(1), depending on the EOS.

13



(ii) Mpnaz is determined essentially by values of physical constants, a

remarkable result.

(iif) Mmaz Will be almost the same for white dwarfs and neutron stars,

although degenerate fermions are different in the two cases.

(iv) The argument is based on the assumption that in the high density
region, the EOS is given by that of a relativistic free fermi gas.

Zeldovich gave a counter example to such a behaviour.

The existence of a maximum mass follows from the relativistic equation of
‘hydrostatic equilibrium and other physical constraints, in particular, the
requirement that within the fluid sphere, the velocity of sound be sublumi-
nal. The problem will be studied further in the context of Vaidya-Tikekar
model in the next section. In particular, the effect of the relevant EOS of
the matter inside will be explored in detail.

5. MAXIMUM MASS IN VT MODEL

A relativistic star, in genéra.l, should satisfy the following conditions:

(i) Both energy density and pressure should be positive in the interior
of the star.

(ii) The pressure should vanish at some finite distance from the centre,

thus determining the radius of the star.

(iii) Inside the fluid sphere, the velocity of sound v, should satisfy the
condition
d
0< v, (= i) < 1.

14
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(iv) ‘The fluid sphere sh@uld be: dynamxcally stable agamst small radial
perturbations. ’ ‘ e R

We make use of these principles to find ‘the relativistic bounds on the
mass of stellar conﬁgura.tlons in VT model. From equations (9) and (10),
we obtain. ' ‘ :

dp _ Z(1- 222 /9 = (1= Z)(a/¥)

== 18
B Za-AFNTAZ . 08
To deterrmne the maximum mass, we consider the partlcula.r configuration
where g% <1 everywhere and " 92 i = 1 at the centre Thls ylelds the

condition for maximum mass as

(%)z J 12%’\[«,\+1¢\/21)\+1] (19

where Z2 = A\/(A +1)). Now for X' > 2, positivity of pressure requires
that we choose the negative sign in equation (19). . The solution of Mukher--
jee et al., equation; (6), can be used to calculate ;

(%_bﬁ ) _ (n*-1) | ‘s'in‘[(n — ‘1")4 +6] —sin[(n+1)¢ + 5] |
)~ =27 | (n+ Dieos[{n — 1)¢+3] - (n— 1) cos[(n+ 1)¢ +3]

(20)
where n? = A\ + 2.
Combining equation (19) with eeuation (20) evaluated at the centre, one

can determine the limiting value of 4 for a given A, and hence the maximal
value of b?/R2. The compactness of the stellar configuration is given by

M) 1+
b a(a+l)

(21)

15



where y = b?/R?. 1t is obvious that the maximum value of y corresponds
to the maximum compactness for a given value of A.

The method employed can be summarised as follows :

(i) We first specify a value of A\. A large value of A ~ 100 is more suited
for describing very compact stars

(n) We assume that the maximum mass corresponds to (—2) =latr
= 0 Thls determmes Ymaz = (%;) and hence, the ma)nmum
"/ maz

compactness

(iii) Thei-e is still one free parameter. It can be specified by giving the
value of one of the three quantities : (i) the radius b, (ii) the central
density p, or (iii) the surface density pp.

This gives us the flexibility to study the maximiim mass problem giving
any one of these quantities 'as an input. The mass of ‘the ‘star can be -

written in terms of the last two quantities as :

BN .
M= 2,/Po(1 + Ay) (22)
_ (1 + /\)3/2y3/2(3+ /\y)l/2 (23) .

2/Pp(1 + Ay)?

16



A | B ez | OB e Mooz /Mo
| b=10km|[b=8km |b=6km
1 | 04618 | 0.3159 2.14 1.71 1.28
2 | 04234 | 0.3438 2.33 1.86 1.39
3 | 03727 | 0.3519 2.38 190 | 143
4 | 03297 | 0.3554 241 1.92 1.44
5 | 02944 | 0.3573 2.42 193 145
7 | 0.2417 | 0.3501 2.43 194 146
10 | 0.1898 | 0.3602 2.44 1.95 1.46
20 | 0.1102 | 0.3611 244 | 195 1.46
50 | 0.0486 | 0.3614 245 | 196 | 147
100 | 0.0252 | 0.3615 2.45 196 | 147
200 | 0.0128 | 0.3615 2.45 1.96 147

Table 2: Maximum mass (Mmqz) of a star for different radii b = 10, 8
and 6 km and for different choices of the parameter A [14].

Sharma, Karmakar and Mukherjee [14] have made a systematic study of
the maximum mass problem in the VT model. Some of these results are
given in Tables 2 and 3. In Table 4, we have compared our results with
results obtained by earlier workers, who made use of the TOV equation.
There is a fair amount of agreement, indicating that VT model may have
some overlap with realistic EOS for compact stars. This has been shown
explicitly by Sharma, et al. [6] in the case of SAX-J. It is expected that
when furthér information about the composition of compact stars become
available, the question of the applicability of VT model to realistic com-
pact stars can be settled.

17



X | po=54x 10 | p, = 10.8 x 10'? | p, = 4.6 x 10 | p, = 5.1 x 10™°
Mma__.‘_n__ bma:z: ___-A_lmuz bma:t Mmam bma:c . Mma.:z: bma:t J
1 | 261 | 1219 | 1.84 862 | 2.83 | 1321 | 2.68 | 12.55 |
2 | 278 | 1193 | 1.96 | 844 | 3.01 | 1293 | 2.86 | 12.28
3 | 278 | 11.66 | 1.96 | 824 | 3.01 | 12.63 | 2.86 | 12.00
4 | 276 | 1147 | 1.95 | 8.11 299 | 1243 | 2.84 | 11.80
5 | 2.74 | 11.33 | 1.94 | 801 2.97 | 12.28 | 2.82 | 11.66
7 | 2.71 | 11.15 | 1.92 788 | 204 | 12.08 | 2.79 | 11.48
10 | 268 | 11.00 | 1.90 778 | 291 | 11.92 | 2.76 | 11.22
20 | 2.64 | 10.79 | 1.87 763 | 2.86 | 11.70 | 2.72 | 1L.11
50 | 2.61 | 10.66 | 1.85 754 | 2.83 | 11.55 | 2.68 | 10.97
100 | 2.60 | 10.61 | 1.84 750 | 2.82 | 11.50 | 2.67 | 10.92
200 | 25 1059 | 1.83 | 749 | 2.81 | 11.47 | 2.67 | 10.90 |

Tablé 3: Maximum mass (Mya:) in Mg and corresponding radius bmaz
in km of a star for different choices of the parameter A and surface density
in units of gmem =3 [14].
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| Reference Model Moz /Mg o |
Ruffini and Neutron star 3.2
Rhoades [15] (Causality principle)

Haensel et al. [16]

Neutron star
(dp/dp =1)

3.0(5 x 1014gmem=3/py) 112

Baldo et al. [17] BBB2 EOS (npep) | 1.92
Kalogera Neutron star 2.2-29
and Baym [18]
Witten [19] Quark star 2.0(Bo/B)'/?,
(Bag model) By = 56MeV fm~3
| Burgio et al. [20] Quark star 1.45 - 1.65
(Bag model)
Banerjee et al. [21] Quark star 1.54(B1/4 = 145MeV)

Mak and Harko [22]

Strange star

1.9638/+/Beo, 2.86

(charged case)
Harko and Cheng [23] | Strange star 1.83
Cheng and Harko [24] | Strange star 2.016
Knutsen [5] Vaidya-Tikekar 3.0
model [24]
Present, work [14] Vaidya-Tikekar 3.01(\ = 2,
pp = 4.6 x 10 gmem=3)
model [24] 2.82(A = 100, '

Py = 4.6 x 104gmem—3)
2.45(\ = 100, b = 10km)
1.96(\ = 100, b = 8km)
1.47(\ = 100, b = 6km)

Table 4: Maximum mass configurations obtained in different models [14].
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6. COMPACT STARS : COMPOSITION

A typical neutron star has an outer crust (nuclei and electrons), an inner
crust (nuclei, neutrons and electrons and muons), an interior part con-
sisting of superfluid protons, neutrons, normal leptons, and a more dense
hadronic core. As the star becomes more compact, the core may contain
more exotic matter, depending on the density. Various possibilities for
the composition of the core are considered below [25].

Hyperon star: Inside the core, the chemical potential of neutrons may
exceed the masses (modified by interactions) of the heavier members of
baryon octet. One would, therefore, expect to find hyperons (A, X, Z) in
the core. Eventually, even A’s may be found in the core of these stars.

Nucleon star: As the core density increases, the reaction e~ — k= + v,
 becomes energetically favouré,ble. Thus, the fermions e~ get replaced by
‘bosons as v escapes. The possibility of this reaction taking place depends
on the mass of K~ inside the dense matter of the star. Terrestrial labora-
tory experiments fortunately provide some useful information here. The
kinetic energy spectrum of produced K in Ni-Ni collision was studied by
Kaos collaboration at GSI. It was shown that in the attractive nuclear
matter at thrice the nuelear density, the mass of K goes down to about
200 Mev (the mass in vacuum is 495 Mev). Note that the chemical po-
tential of electron inside the neutron star matter can very well be close
to 200 Mev so that the above reaction can take place. The neutrons can
now be converted back to protons [25] and the core of a newly formed

neutron star could become iso-spin symmetric, with almost equal number

20



of protons and neutrons. This lowers the energy per baryon of the nuclear
matter. The neutron star of this type is called Nucleon star, being very
similar to an ordinary nucleus, which contains almost equal number of
protons and neutrons. The maximum mass of these stars has been esti-
mated to be about 1.5 - 1.8 times the solar mass.

H-dibaryon star: Dibaryon is an exotic composite of six quarks, doubly
strange, with baryon number two, zero spin and zero iso-spin. In the
core of moderately dense neutron stars, there is a sizable number of A
hyperons, which could combine to produce H-dibaryons. If the density
is about 3 - 6 times the nuclear density, the H—d_ibaiyons can give rise to
H-matter, depending on the in-medium propertiés of H-dibaryons. It has
been suggested [26] thaﬁ in a mild attractive potential of about ~ 30 Mev,
‘H-dibaryons, which has a vacuum mass of about 2.2 Mev, can form a
Bose condensate in the core of a neutron star of mass of about 1.44 times
the solar mass. Thus, H-dibaryons could very well be present inside the
Hulse-Ta,ylor Pulsar, PSR 1913 - 16. However if the medium potentlal
is repulsxve, say about + 30 Mev, dibaryons cannot be formed unless the
mass of the star exceeds 1.6 times the solar mass. However, the H-matter
is unstable against a compression and a perturbation can easily convert a
dibaryon star into a pos31b1e stra,nge star, which will be discussed in the

next section.

7. A STRANGE STORY

Since 1973, scientists have been studying the possibility that in the ex-

treme pressure prevailing in the core of neutron stars, the constituents,
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proton, neutron and the hyperons, could melt and undergo a phase tran-
sition to produce the quark-gluon plasma. It is still not known at what
‘density this phase transition becomes possible. It is expected that the
existence of quark-gluon plasma will be confirmed in near future from the
laboratory experiments with heavy ion colliders at CERN, and LHC in
particular. There is no definite indication yet from the Lattice QCD sim-
ulation results. However, a simple argument can provide a rough estimate
of the threshold. Nuclei begin to touch each other at a density,

P~ (%bs)—'1 ~0.24fm=3 .

For higher densities, the nuclear boundaries should disappear and quarks
may become deconfined. Depending on the rotational frequency and mass,
a density greater than 3 - 4 times the nuclear density may occur in pulsars

- and it is likely that deconfinement may set in such pulsars.

The concept of strange matter has become a subject of great interest af-
ter the suggestion of Witten [19] in 1984 that it is the true ground state
of quax{tum chromodynamics. The essential idea is as follows. Among
nuclei, the nucleus *6Fe has the highest B.E. pér nucleon, given by
M(%6Fe)c?/56 = 930.4 Mev. But for strange matter, described by the
Bag Model, E /A = 829 Mev for the Bag constant B = 57.5 Mev/fm and
E/A = 915 Mev for B = 85.3 Mev/fm, both lower than that in Fe. Exten-
sive studies with the Bag model with various values of m,, the mass of the
strange quark and the Bag constant B have revealed a window of étability
in the m, — B plane in which the strange quark matter is stable. This im-
plies that one could expect strange matter to provide star-like self-bound

systems (strange stars), much more compact than normal neutron stars.
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One would expect these self bound stars to consist of a plasma of almost

equal populations of u,d and s quarks and a small admixture of electrons.

This presence of strange matter in a star will have startling consequences:

(1)

(i)

All stellar configurations would be metastable. Also if transition
to strange matter is possible (by tunneling !), all neutron stars may
eventually become strange stars. Such stars will consist of 3 flavored
strange matter covered by a thin crust of hadrons with density lower
than the neutron drip density (4 x 10'1gm/cm3).

The absolute stability of strange matter may produce a variety of
objects, starting from small strange stars with A ~ 102 to enormous

" objects A ~ 1057, beyond which the configurations become unstable

(i)

(iv)

under gravitational collapse.

If the!change over to strange matter takes place within a neutron

star, of course, the maximum mass will be the same as that of 3

typical neutron star.

However, if a large quantity of quark matter is left in the universe,

-as a relic of the quark-hadron phase transition in the early universe,

it could condense due to'gra‘vitat‘ional attraction and can even form

invisible quark galaxies. The stars of such galaxies would be strange

- stars. Since these did not evolve out of neutron stars, it is interesting

to investigate their maximal mass. Banerjee, et al. [20] following the
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energy balance arguments, calculated the maximum mass of strange
stars. For a typical value of B1/4 ~ 145 Mev, they obtained the
values Ropaz = 12.11 km, Myap = 1.54 Mg and Npqp = 1.55%10%7,
almost the same as for a neutron star. It was also shown that the

"~ maximum mass decreases as B increases.

(v) If strange stars really exist, they will provide useful information
about strong interaction of hadrons, in particular, deconfinement
and quark-gluon plasma.

8. BOSON STARS

Stable soliton-like configurations of a bosonic field bound by its own grav-
itational field are called Boson Stars (BS). These may be regarded as
descendants of geons, proposed by J.A. Wheeler in 1955, which are self-
gravitating photonic configurations. The study of BS started in 1968
with the seminal paper by Kaup [27], in which self-bound configurations
of a complex scalar field were studied semiclassically, the classical energy-
momentum tensor T uv providing the source for vgravitationa.l interaction.
This was followed by Ruffini and Bonazzola [28], who considered the quan- |
tization of a real scalar field and constructed the ground state of N par-

ticles. The vacuum expectation values (VEV) of the field operators here
| lead to the same energy-momentum tensor (and hence, the same field
equations) as are obtained with classical complex scalar fields. The gravi-
tational field, g,,,,; was, however, treated as a classical field. Considerable
~ work has since_been done on BS, considering a wide variety of scalar
fields and their possible interactions. The interactions considered are of
the following types : »
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(i) The fields considered are massive and complex but have no other
self-interactions.

(ii) Fields %m‘a"y have a self-interaction deséﬁbed by a potential, V(¢) or
" V(¢¢*), depending on whether ¢ is a real or a complex scalar field.

(iii) Minimal coupling to gauge fields, where the scalar field carries a
charge, e.g., electric charge or hypercharge.

(iv) Non-minimal coupling, as in scalar-tensor theories, or self-interacting
dilaton fields.

The general features of BS are outlined below :

(i) BS are essentially macroscopic quantum states. If we consider mas-
sive scalar fields without any self-interaction, these states are pro-
tected against a gravitational collapse by Heisenberg’s uncertainty
principle. These states are usually called mini-boson stars.

(ii) It it easy to estimate the order of the mass of a mini-boson star.
If the state has a characteristic size R, the uncertainty principle
suggests that the momentum p ~ -}7. For a moderately relativistic

boson, we expect p ~ m (the boson mass), so that R~ —,%; Now, for

hydrostatic equilibrium, the total mass of the boson star M ~ —g,
which we can rewrite as M ~ z— = Mnf—g . This also shows that

one can get boson stars of different masses, depending on the mass
of the scalar field.

(iii) The above estimate of the BS mass is much smaller than the Chan-
drasekhar mass for stars with marginally relativistic fermions, e.g.,
My ~ 2%
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(iv)

(v)

(vi)

The situation, however, changes if one considers a self-interaction.
Colpi, Shapiro and Wasserman [29] considered a complex scalar field
with A(¢*¢)? interaction and showed that the resultmg configura-
tion. differs consxderably from the non-mteractmg case even for a
very small A. The maximum mass in this case could be large and
comparable with Chandrasekhdr mass for fermions. This makes the
study of BS relevant in Astrophysics. If BS really exists, it may
account for a part of the dark matter of the universe. Thus, BS
may play a very important role, acting as a laboratory for testing
various ideas for dark matter, as well as for models of scalar fields

and their interactions.

The BS considered above are non-perturbative solutions of Einstein-
Klein-Gordan equations, as is obvious from the relation M « 213
Thus, there is no flat space-time limit for these objects.

The BS is not a static object. The scalar field has the form of a
standing wave, &(7,t) = e'*'¢(7T"). However, the metric and the

tensor Tuv of the scalar field are time independent.

9. IN SEARCH OF A SCALAR FIELD

Although particle theories make use of a large number of scalar fields,

none of these has yet been observed. There are of course, pseudo scalar

mesons. These are described by complex scalar fields. The Klein-Gordon

equation for a complex scalar field has a global U(1) symmetry and this
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leads to a conserved quantity. For charged pseudo scalar particles, say,
IT* and II~, the conserved quantity is the charge

Q,= e(N+_N_)1

whereas for neutral particles, e.g., K° and K°, the conserved charge is
the strangeness S. These particles are unstable and it is not clear if these
can form a stable bound state by gravitational binding.

The most likely scalar field is the Higgs particle. In Salam-Weinberg
model, Higgs boson doublet (®*,®°) and their antiparticles (&~,%") are
necessary for generating masses for the gauge vector mesons W, Z°. Af-
ter the symmetry breaking, only one real scalar particle h = %(Q" +%°)
remains free and its mass is expected to be of the order of 1 Tev/c?.
Supersymmetric extensions would imply more Higgs fields, H°, A° and
a charged doublet H* in the mass range of 100 Gev/c? — 1000 Gev/c?.
Experiments planned in near future should be able to confirm if these
particles exist. The possibility of the formation of stable Boson stars
with the Higgs field is a problem of considerable interest. In SW model,
if h is much heavier than gauge bosons, we expect possible decay modes
h— W+ + W~ ,h— Z°+ Z° to exist. In the BS, these decay channels
will be in partial equilibrium with the inverse process, e.g., Z° + Z° — h,
Z°+Z° — Z° + h + v, etc., in which the participating particles borrow
from the gravitational binding energy. This is similar to the neutron star,
where the 3-decay and the inverse 5-decay processes maintain the equi-
librium of the macroscopic body. Considerable work has also been done

on dilaton star.
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10. CONCLUDING REMARKS

The possible existence of highly compact stars has been a subject of study
for years. An interesting result in this connection was obtained by Iyer,
Vishveshwara and Dhurandhar [30], who considered the available EOS
and concluded that an object with a radius b <' 3 M, where M is the
mass, could very well exist. They called these objects "ultra-compact".
Recent detection of compact dead stars is consistent with this prediction.
This also opens up the possibility of studying matter at densities much
higher than the nuclear density and also provides constraints on models of
particle interactions. Presen'tly, we do not have any reliable information
about the EOS of these compact objects. The EOS derived from known
nuclear physiés and other terrestrial experiments (e.g., heavy ion scatter-
ing) cannot possibly be extrapolated upto the densities relevant for such
objects (o0 > 2pp). Vaidya-Tikekar model can play a very useful role
here. The model has already been used with advantage to study a strange
star [6]. Recently, Sharma, Karmakar and Mukherjee [14] have used the
model to make an extensive study of various aspects of the problem of
maximum mass for compaét VT stars.

It should be pointed out that VT model, in general, may not describe a
realistic star. If it does, it is a welcome coincidence. The coincidence is
more likely if the EOS is almost linear. This has already been confirmed
in the case of SAX-J [6]. The results on maximum mass are also in gen-
eral agreement with those calculated with the known EOS, as are shown
in Table 4. Thus, there seems to be some overlap of the VT model with

realistic EOS of compact stars. Whether this overlap survives when fur-
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ther information on the EOS of very compact stars become available is an
issue of great interest. Meanwhile the VT model may be considered as a
‘toy model for a class of cold compact stars. The simple analytic solution
[6] is an added advantage of this model. It has already been used [31] in
a perturbative calculation of the evolution of a star after a supernova ex-
plosion, where the solution [6] is used to describe the final state of the star.
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