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Joshi and his collaborators, [Joshi and Goswami (2007)] recently constructed a family of solutions
of Einstein’s field equations which represented perfect fluid undergoing gravitational collapse. At
the beginning the fluid satisfied all the energy conditions, while at the late stage the pressure was
allowed to be negative. The weak energy condition was, however, still satisfied. There was a massive
ejection of matter in the late stage of collapse and hence could avoid the occurrence of an event
horizon.In what follows there is another approach to explain the mass loss from the collapsing sphere.
It is the dissipation of heat from the interior of the collapsing body. The interior is matched with
the exterior Vaidya’s radiating metric. In this model the mass loss due to radiation is accompanied
with the decrease of the boundary radius in such a manner that the horizon does not appear on the
surface of the collapsing sphere at any stage.

I. FLUID SPHERE WITH HEAT FLOW AND THE JUNCTION CONDITION

The time-like three surface divides space-time into the interior and the exterior manifolds V − and V +.
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On the boundary surface Σ we have

dS2
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The energy momentum tensor in the interior of a rotation free and shear free fluid with heat flow is

Tµν = (ρ + p)vµvν + gµνp + qµvν + qνvµ ,

qµ is the heat flux defined as qµ = q(t, r)δr
µ and qµvµ = 0.

Continuity of the first fundamental form leads to
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at the boundary.
Using the Israel-Darmois [1996] boundary conditions for the continuity of the second fundamental form
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The extrinsic curvature forms on the surface
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ξi’s are coordinate on the boundary hyper surface. nµ(∓) are the unit normal vectors on Σ in the interior
and the exterior regions.

In terms of the interior co-moving coordinates

r − rΣ = 0,

where rΣ=constant.
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In terms of the exterior Vaidya-coordinates the boundary is
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Continuity of the first fundamental forms:
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Extrinsic curvature components:
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Total mass contained within the co moving radius ’r’ is given by Cahil and McVittie(1970)
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In view of (8)
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Equating

mΣ = M (9)

Using Einstein’s field equation Gµ
ν = +8πTµ

ν in the relation

k(−)
ττ = k(+)

ττ

We obtain

[T
1(−)
1 + e

(λ−ν)
2 T

1(−)
0 ]Σ = 0 (10)

This is a general result valid for a fluid admitting viscosity also [Banerjee and Dutta Choudhury (1989)].

For a non-viscous fluid (10) leads to p = (q1q1)
1
2 at the boundary. If there is no heat flux the pressure at

the boundary pΣ = 0. The exterior is then Schwarzschild space time M = constant. For an observer at rest at
infinity, the total luminosity is given by

L∞(v) = 4πr2q = −
dM

dv
(11)

q is the energy flux density of the radiation and at the exterior

Tµν = −
1

4πr2

dM

dv
δ0
µδ0

ν

II. FLUID SPHERES WITH HEAT FLUX AND ISOTROPIC PRESSURE:

We use different symbols

A2 = eν and B2 = eλ

The pressure isotropy leads to

Axx

A
−

Fxx

F
+ 2

Ax

A
.
Fx

F
= 0

where F = 1
B

and x = r2.
(1) Assume Fxx = 0

B =
1

a(t)r2 + b(t)
, A =

c(t)r2 + d(t)

a(t)r2 + b(t)

These solutions are conformally flat (Weyl curvature terms vanish) [Banerjee and Som (1981)]. Suitable
choices of a(t), b(t), c(t) and d(t) gives Maiti’s (1982) form.

dS2 = −[1 +
η(t)

1 + ξ(t)r2
]
2

dt2 +
R2(t)

(1 + ξ(t)r2)
(dr2 + r2dθ2 + r2sin2θdφ2)

(2) Assume a(t) = 0 , b(t) = d(t)
The metric reduces to

dS2 = −(1 + ξ(t)r2)
2
dt2 + R2(t)(dr2 + r2dθ2 + r2sin2θdφ2) [Modak(1984)].

A special class of Modak’s solution ξ(t) = ξ0, which is a constant.

A = (1 + ξ0r
2) and B = R(t).
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The mass parameter of the distribution upto the boundary following from (8) is given by [9]

2mΣ =

[

r3BḂ2

A2
− 2r2B′ −

r3B′2

B

]

Σ

=
r3
0RṘ2

(1 + ξ0r
2
0)

(12)

and r̄Σ = R(t)r0,

where r0 =boundary radius in comoving radial coordinate.

The boundary condition [Santos(1985), Bonnor et al(1989)] pΣ = (q1q
1)

1
2

Σ yields

2RR̈ + Ṙ2 + C1Ṙ = C2 (13)

where C1 and C2 are constants.
A simple solution of (13)

R(t) = −ct (14)

where c is a constant.

A very interesting result from this solution

2mΣ

r̄Σ
=

2mΣ

R(t)rΣ
=

r2
0c

2

(1 + ξ0r
2
0)

(15)

The right hand side is independent of time. Once it is chosen less than unity the quantity
(

1 − 2M(v)
r̄Σ

)

remains always positive and hence the horizon never appears at the boundary.

This happens because here the rate of mass loss in the form of radiation is the same as the rate of fall of the
boundary radius in the collapse.

III. PROPERTIES OF THE SOLUTION:

In the equation (13)

C1 = −4ξ0r0 , C2 = 4ξ0(1 + ξ0r
2
0)

so that

c =
1

2
[−|C1| + (C2

1 + 4C2)
1
2 ]

Hence c > 0.
The solution R(t) = −ct presents collapse for −∞ < t ≤ 0.

Density, pressure and heat flow vector are

ρ =
3

t2(1 + ξ0r2)
2 (16)

p =
1

t2(1 + ξ0r2)
2

[

4ξ0

c2
(1 + ξ0r

2) − 1

]

(17)

and
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q1 = +
4ξ0r

c2t3(1 + ξ0r2)
2 (18)

ξ0 = 0 corresponds to no heat flux. The solution reduces to FRW space-time.

All these quantities diverge at t → 0, the final step of the collapse.
There is no particular equation of state. In the interior all the energy conditions are satisfied.

Investigations of the expressions for ρ and p reveal that ρ > 0, p > 0, ρ′ < 0. Further p′ < 0 at r = 0 would
be satisfied provided the following condition is satisfied

c2 < 2ξ0.

In addition the condition ρ > p requires

c2 > ξ0(1 + ξ0r
2
0)

So finally a physically realistic model would require the inequality relation

2ξ0 > c2 > ξ0(1 + ξ0r
2
0)

One of the consequences of this relation is (1 − ξ0r
2
0) > 0.

Since the fluid is conducting heat it must satisfy another condition such as

(ρ + p) > 2|q|, where |q| = (gµνqµqν)
1
2 (19)

in order to be consistent with all the energy conditions [Kolassis, Santos and Tsaubellis(1988)]. The condition
(19) demands

1 +
2ξ0

c2
(1 + ξ0r

2) >
4ξ0r

c
,

which may also be written in a different form

(1 −
2ξ0r

c
)
2

> −
2ξ0

c2
(1 − ξ0r

2). (20)

Naidu and Govender(2007) studied our model in the context of casual heat transport equation. In particular
they investigated the relaxational effects on the temperature profile within the frame work of truncated Israel-
Stewart transport equation

τhν
µq̇ν + qµ = −k(DµT + T v̇µ),

where τ is the relaxation time for the thermal signals and k is the thermal conductivity of fluid. Setting
τ = 0 the so called Eckart transport equation is regained. In this work Naidu and Govender have shown
that the solutions for the temperature profile are such that the causal temperature exactly coincides with the
noncausal temperature at the boundary r = r0.

Extension of the result in more than four dimensional space time [Banerjee and Chatterjee
(2005)].

In (n + 2) dimensions the interior metric is

dS2 = −A2(t, r)dt2 + B2(t, r)(dr2 + r2dX2
n)

where dX2
n = dθ2

1 + sin2θ1dθ2
2 + ....sin2θ1sin

2θ2...sin
2θndθ2

n The exterior generalized Vaidya metric

dS2 = −(1 −
2m(v)

(n − 1)r̄n−1
)dv2 − 2dr̄dv + r̄2dX2

n
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The isotropy of pressure leads to a special solution

dS2 = −(1 + ξ0r
2)dt2 + R2(t)(dr2 + r2dX2

n)

The boundary condition pΣ = (qB)Σ yields

2RR̈ + (n − 1)Ṙ2 + N1Ṙ = N2

N1 and N2 are constants. For a particular solution R(t) = −ct, the calculations are similar to those done in
the earlier 4-dimensional case yield an equation modified for (n + 2) dimensions

2MΣ

(n − 1)r̄n−1
Σ

=
c2r2

0

(1 + ξ0r
2
0)

2

The right hand side is a constant. It does not even depend on the number of dimensions. One can choose the
right hand side less than unity and hence the horizon does not appear. Now the density, heat flow and pressure
are modified in higher dimensions

ρ =
n(n + 1)

2t2(1 + ξ0r2)
2

p =
n

t2
[

2ξ0

2(1 + ξ0r2)
2 −

(n − 1)

2(1 + ξ0r2)
2 ]

q = −
2nξ0r

c2t3(1 + ξ0r2)
2

here also the energy conditions are satisfied. The above calculations are done for the completeness of our final
result.
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